User's Manual

CW120/121 CLAMP-ON POWER METERS

IM CW120-E

Store this manual in a safe place for future reference.

Before Use

Before starting measurement with your CW120 or CW121, fill in the Setting Check Sheet in the back of the *Operation Guide* (IM CW120P-E) with your particular settings, to facilitate setting on site.

Introduction

Thank you for purchasing our CW120 or CW121 Clamp-on Power Meter. This User's Manual explains the functions of the CW120/121, as well as the operating methods and handling precautions. Before using the CW120/121, read this manual thoroughly to ensure correct use of the instrument.

Manual

There are manuals for the CW120 or CW121 including this one.Read them along with this manual.User's ManualIM CW120-EOperation GuideIM CW120P-ECommunication FunctionIM CW120C-E

Contact information of Yokogawa offices worldwide is provided on the following sheet.

PIM 113-01Z2 Inquiries

List of worldwide contacts

Notes

The contents of this manual are subject to change without prior notice. In addition, figures and illustrations representing display appearances in this manual may differ from the actual appearances.

Every effort has been made to ensure the accuracy of this manual. If you notice any errors or have any questions, however, please contact one of the Yokogawa sales offices listed on the back cover of this manual or the sales representative from which you purchased the instrument.

The contents of this manual may not be transcribed or reproduced, in part or in whole, without prior permission.

Trademark Acknowledgments

All company and product names appearing in this document are trademarks or registered trademarks of their respective holders.

Revision Information

December 2001: 1st Edition April 2014: 6th Edition June 2003: 2nd Edition - - - : 3rd Editio2n May 2007: 4th Edition March 2012: 5th Edition

Disk No. CW120-E 6th Edition: Apr. 2014 (KP) All Rights Reserved. Copyright © 2001, Yokogawa M&C Corporation 2014, Yokogawa Meters & Instruments Corporation Printed in Korea

Checking Items in the Package

After opening the package, check the product as follows before use. If the delivered product is the wrong model, any item is missing, or the appearance is defective, contact the vendor from which you purchased the product.

CW120/121 Main Unit

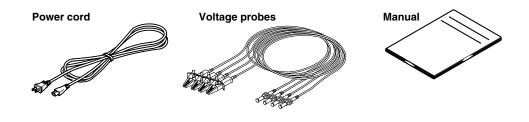
Check the model and suffix (specifications) codes in the MODEL and SUFFIX fields of the nameplate at the back of the instrument to ensure that the instrument is exactly as specified in your purchase order.

Model	Sut	fix Code	Specification			
CW120			Clamp-on power meter for single-phase two-wire, single-phase three-wire, three-phase three-wire, and single-phase tow-wire $\times 2^*$ circuits			
CW121			Clamp-on power meter for single-phase two-wire, single-phase three-wire three-phase three-wire, three-phase four-wire, single-phase tow-wire $\times 2^*$, and single-phase tow-wire $\times 3^*$ circuits			
	-D		UL/CSA standard			
	-F		VDE standard			
Power cord	-H		GB standard			
	-R		SAA standard			
	-S		BS standard			
	-P		KC standard			
	-N		NBR standard			
Communicatio	on	-1	With RS-232-C interface			
interface	Γ	-2	With RS-485 interface			
			*			

Model and Suffix Codes

* "x2", "x3" means multiple-system load measurements.

No. (serial number):


Refer to this serial number on the nameplate when contacting the vendor about the instrument.

Accessories

Make sure that the package contains all the accessories listed below and that they are all free from any damage.

Product Name	Part Number	Qty	Remarks
Power cord ¹	B9988YA		-D: UL/CSA standard
(One of the four options)	B9988YB		-F: VDE standard
,	B9988YJ		-H: GB standard
	B9988YC		-R: SAA standard
	B9988YD		-S: BS standard
	A1078WD		-P: KC standard
	A1086WD		-N: NBR standard
Voltage probes (for CW120)	91018	3	Color: Black, red, yellow
Voltage probes (for CW121)	91007	4	Color: Black, red, yellow, blue
User's Manual	IM CW120-E	1	
Operation Guide	IM CW120P-I	E 1	
Set Up Disk		1	TOOL BOX (CD-ROM)
Voltage probes (for CW120)	91018	3	Color: Black, red, yellow
Voltage probes (for CW121)	91007	4	Color: Black, red, yellow, blue
Set Up Disk		1	TOOL BOX (CD-ROM)
Manual			
User's Manual	IM CW120-E	1	
Operation Guide	IM CW120P-E	1	
Communication Function	IM CW120C-E	1	
	IM CW120-93Z	21	Document for Korea
	PIM 113-01Z2	1	List of world wide contacts

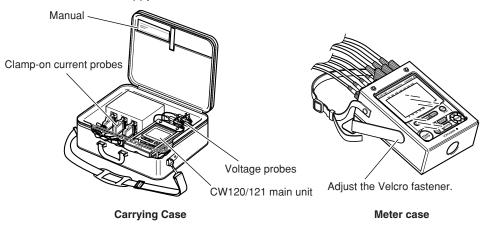
1 Make sure that the attached power cord meets the designated standards of the country and area that you are using it in.

Peripherals (Optional)

The products listed below are available as optional peripherals. For technical and ordering inquiries concerning the peripherals, contact the vendor from which you purchased the instrument. If you purchased any one of the optional peripherals together with the CW120/121, make sure it is free from any damage.

Product Name	Part Number	Minimum Order Qty	Remarks
Clamp-on current probe for 20/200 A	96030	1	Applicable to CE.
Clamp-on current probe for 50/500 A	96031	1	Applicable to CE.
Clamp-on current probe for 200/1000 A	96032	1	Not applicable to CE and UL.
Clamp-on current probe for 5/50 A	96033	1	Applicable to CE.
Clamp-on current probe for 3000 A	96034	1	Applicable to CE.
Clamp-on current probe for 3000 A	96035	1	Applicable to CE.
Power supply cable	98030	1	Not applicable to CE and UL
Voltage probes (for CW121)	91007	4	1 set
Voltage probes (for CW120)	91018	3	1 set
RS-232C cablk	91011	1	D-sub 9 pin
RS-232 serial printer cable	91010	1	
Carrying case	93022	1	For CW120 Series
Meter case	93023	1	For CW120 Series
Portable case	93024	1	For CW120 Series
Memory Card (256 MB)	97034	1	With PC card adapter
Memory Card (512 MB)	97035	1	With PC card adapter
Memory Card (2GB)	97037	1	With PC card adapter
Application Software	AP240E	1	

TIP


Keep the packing box in case you need to transport the instrument.

Housing CW120/121 and Accessories

The optional carrying case can accommodate the CW120 or CW121 main unit with its current-sensing clamp-on probes and voltage probes connected to the unit. The case can also hold such accessories as manuals and PC cards, and so is useful for transporting a complete set of tools necessary for measurement.

The optional meter case can be used as a stand during measurement as shown below right. It also has a magnetic rear plate and so can be stuck to the door of a power distribution panel or the like.

Note: Keep the meter case away from objects vulnerable to a magnetic field, such as floppy disks.

Precautions for Safe Use of the Instrument

When operating the instrument, be sure to observe the cautionary notes given below to ensure correct and safe use of the instrument. If you use the instrument in any other way than instructed in this manual, the instrument's protective measures may be impaired. YOKOGAWA is by no means liable for any damage resulting from use of the instrument in contradiction to these cautionary notes.

The following safety symbols are used in the instrument and this manual.

Danger! Handle with Care.

This symbol indicates that the operator must refer to an explanation in the User's manual or Service manual in order to avoid risk of injury or death of personnel or damage to the instrument.

--- Direct Current

This symbol indicates DC voltage/current.

Alternating Current

This symbol indicates AC voltage/current.

| ON

This symbol indicates On (power).

○ OFF

This symbol indicates Off (power).

Double Insulation

This symbol indicates double insulation.

Indicates a hazard that may result in the loss of life or serious injury of the user unless the described instruction is abided by.

Indicates a hazard that may result in an injury to the user and/or physical damage to the product or other equipment unless the described instruction is abided by.

🖄 NOTE

Indicates information that is essential for handling the instrument or should be noted in order to familiarize yourself with the instrument's operating procedures and/or functions.

TIP

Indicates information that complements the present topic.

SEE ALSO

Indicates the reference location(s) for further information on the present topic.

Strictly observe the following cautionary notes in order to avoid the risk of injury or death of personnel or damage to the instrument due to such hazards as electrical shock.

- Use the instrument Only for Its Intended Purpose
 - This instrument is a power measurement instrument that can measure parameters such as voltage, current, and power.
 - Do not use this instrument for other purpose.
- Check the Physical Appearance

Do not use the instrument if there is a problem with its physical appearance.

- Do Not Remove the Case or Disassemble
 - · Do not remove the case from the instrument or disassemble/modify the instrument itself.
 - Some parts of the inside of the instrument contain high-voltage and, therefore, access to the internal assembly is extremely hazardous. For inspection and/or adjustment of the internal assembly, contact the vendor from which you purchased the instrument.
 - Do not attempt to repair/modify the instrument yourself, as doing so is extremely dangerous.
- Use of the Instrument in a Gas Atmosphere

Do not operate the instrument in a location where any flammable or explosive gas/vapor is present. It is extremely hazardous to operate the instrument in such an atmosphere.

- Inspection of Power Source
 - Before turning on the instrument, always make sure the voltage of the power source to be applied matches the instrument's supply voltage.
- Use of Clamp-on Current Probes
 - When using clamp-on current probes, keep the circuit voltage below 600 V AC in order to avoid possible short-circuits or accidents resulting in injury or death.
 - Ensure that the rated current of the circuit you measure matches the rating of the current probe.
 - Avoid using the instrument if it has been exposed to rain or moisture or if your hands are wet.
 - Do not use clamp-on current probes with any non-insulated conductors.
- Measures In Case of Anomalies

If the instrument begins to emit smoke, becomes too hot, or gives off an unusual smell, immediately turn it off and disconnect the power cord from the outlet. Also turn off power to the object under measurement that is connected to the instrument's input terminals. Never attempt to use the instrument again. If any such anomalies as noted above occurs, contact the vendor from which you purchased the instrument. Do not attempt to repair the instrument yourself, as doing so is extremely dangerous.

- Handling of Power Cord
 - To prevent the possibility electrical shock or fire, be sure to use the power cord supplied by YOKOGAWA. Additionally, do not use the power code supplied with this instrument with another instrument.
 - Do not place any load on the power cord or allow the power cord to come into accidental contact with any heat source. When unplugging the power cord from the outlet, hold its plug, rather than holding and pulling the cord itself.
 - If the power cord is damaged, contact the vendor from which you purchased the instrument.

• Fuses

Fuses built into this instrument for protection cannot be replaced by the user. When any builtin fuses need to be replaced such as because they have blown, contact the vendor from which you purchased the instrument.

This product is Class A for use in an industrial environment and may cause radio interference if used for domestic use. Therefore, appropriate measures must be taken when using it for domestic use.

Utilisation en Toute Securite

Dans le cadre de l'utilisation de cet instrument, s'assurer de respecter les mises en garde indiquées cidessous pour garantir une utilisation correcte et sans danger de l'instrument. Si vous utilisez l'appareil d'une autre manière que celle indiquée dans ce manuel, il est possible que cela endommage les dispositifs de protection.

YOKOGAWA ne saurait en aucun cas être déclaré responsable de tout dommage résultant d'une utilisation de l'instrument ne respectant pas ces mises en garde.

- Symboles utilisés sur les appareils et dans les Manuels d'instruction.
- Explication: ce symbole indique que l'opérateur doit se reporter à une explication donnée par le manuel utilisateur afin d'éviter un accident au personnel ou de protéger l'appareil.
- --- Courant continu: Ce symbole indique une tension/intensité C.C.
- ~ Courant alternatif: Ce symbole indique une tension/intensité C.A.
- MARCHE: Ce symbole indique la mise sous tension.
- O ARRET: Ce symbole indique la mise hors tension.
- **Double isolation:** Ce symbole indique une double isolation.

\land Avertissement

Indique un danger. Attire l'attention sur une utilisation, sur une procédure qui pourraît être dangereuse pour le personnel.

Attention

Indique un danger. Attire l'attention sur une utilisation, sur une procédure qui pourraît être préjudiciable au produit.

- Utiliser cet instrument uniquement pour l'usage auquel il est destiné
 - Cet instrument est un outil de mesure électrique pouvant quantifier des paramètres comme la tension, l'intensité ou la puissance électriques.
 - Ne pas utiliser cet instrument pour un autre usage.
- Vérifier l'aspect physique

Ne pas utiliser cet instrument si son aspect physique présente un problème.

- Ne pas retirer le boîtier ou le démonter
 - Ne pas retirer le boîtier de l'instrument et ne pas essayer non plus de démonter/modifier l'instrument lui-même.
 - L'instrument renferme des composants parcourus par des tensions élevées. Il est donc extrêmement dangereux d'accéder à ses circuits internes. Pour vérifier et/ou régler les circuits internes, contacter le revendeur auprès duquel a été acheté l'instrument.
 - Ne pas essayer de réparer/modifier cet instrument soi-même car cela peut s'avérer extrêmement dangereux.
- Utilisation de l'instrument dans une atmosphère gazeuse

Ne pas utiliser l'instrument dans un endroit qui renferme des gaz/vapeurs inflammables ou explosifs. Il est extrêmement dangereux d'utiliser l'instrument dans une telle atmosphère.

- Vérification de la source d'alimentation
 - Avant de mettre l'instrument sous tension, toujours s'assurer que sa tension correspond à celle de la source d'alimentation.
- Utilisation des sondes d'intensité à pince
 - Lors de l'utilisation des sondes d'intensité à pince, maintenir la tension du circuit au-dessous de 600 V CA afin d'écarter tout risque de court-circuit ou d'accident susceptible de provoquer des blessures qui peuvent éventuellement s'avérer mortelles.
 - Assurez-vous d'utiliser un capteur de courant dont le calibre correspond au niveau d'intensité à mesurer.
 - Eviter d'utiliser l'instrument si celui-ci a été exposé à la pluie ou à l'humidité, ou encore si vos mains sont humides.
 - Ne pas utiliser les sondes d'intensité à pince avec des conducteurs non isolés.
- Mesures à prendre en cas d'anomalies

Si l'instrument est brûlant, dégage de la fumée ou une odeur inhabituelle, le mettre immédiatement hors tension et débrancher le cordon d'alimentation de la prise secteur. Mettre également hors tension le circuit sur lequel est effectuée la mesure et qui est raccordé aux bornes d'entrée de l'instrument. Ne surtout pas essayer d'utiliser l'instrument à nouveau. Si l'une de ces anomalies est détectée, contacter le revendeur auprès duquel a été acheté l'instrument. Ne pas essayer de le réparer soimême, car cela est extrêmement dangereux.

- Manipulation du cordon d'alimentation
 - Pour éviter tout choc électrique ou incendie, s'assurer d'utiliser le cordon d'alimentation fourni par YOKOGAWA. De plus, ne pas utiliser le cordon d'alimentation fourni avec cet instrument avec un autre appareil.
 - Ne déposer aucune charge sur le cordon d'alimentation et éviter tout contact fortuit entre celui-ci et une source de chaleur. Pour débrancher le cordon de la prise secteur, tirer sur sa fiche, mais jamais sur le fil proprement dit. Si le cordon d'alimentation est endommagé, contacter le revendeur auprès duquel a été acheté l'instrument.
- Fusibles

Les fusibles de protection montés sur cet instrument ne peuvent pas être remplacés par l'utilisateur. Si, par suite de claquage, un fusible doit être remplacé, veuillez contacter le vendeur auprès de qui vous avez acheté l'instrument.

\land Attention

Ce produit est destiné à un usage dans un environnement industriel (classe A) et peut causer des interférences radio s'il est utilisé dans un cadre domestique. Aussi, des mesures adaptées doiventelles être prises en cas d'usage domestique.

2.2 Connexion des signaux d'entrée

Avertissement

- · Lire attentivement la section 5.1, « Précautions de câblage du circuit à tester. »
- Lors du branchement du CW120/121, mettre le circuit à tester hors tension. Il est extrêmement dangereux de brancher ou de débrancher des sondes sur ou à partir d'un circuit sous tension.
- Veiller scrupuleusement à ne brancher aucun circuit en mode de tension aux bornes d'entrée de courant électrique et aucun circuit en mode de courant électrique aux bornes d'entrée de tension. Un mauvais branchement peut non seulement endommager le circuit ou l'équipement à tester mais aussi blesser le personnel.
- Ne brancher aucune sonde non nécessaire (c'est-à-dire non utilisée) pour la mesure du courant électrique, même si plusieurs sondes peuvent être branchées simultanément au CW120/ 121.
- N'utiliser aucune autre sonde que la pince sur les sondes de courant ou de tension fournies.
- Ne pas utiliser une pince sur une sonde de courant électrique pour un conducteur non isolé.
- S'assurer que les caractéristiques de la pince sur la sonde de courant électrique utilisée correspondent à celles du courant mesuré.
- Avant de brancher une pince sur une sonde de courant au CW120/121, s'assurer que la prise est insérée selon la bonne polarité H/L.

Attention

Veiller à ne pas endommager une sonde lors de la fixation de bagues repères.

2.4 Dépassement et autres repères indiqués pendant la mesure

Avertissement

Lorsque le repère de dépassement apparaît avec la plage définie à son maximum, cela signifie que l'entrée excède le niveau maximal admissible du CW120/121. Ne pas appliquer une entrée d'un niveau supérieur au niveau maximal admissible.

Attention

Lors de la mesure d'un signal d'entrée d'un niveau excédant la plage nominale, utiliser un transformateur de tension (TT) ou de courant (TC). En cas d'utilisation d'un transformateur de tension ou de courant, lire attentivement la section 5.3 « Câblage du circuit à tester avec un TT/ TC externe. »

3.1 Précautions de manipulation

Attention

- Le TC (transformateur de courant) à pince est monté avec précision pour garantir une haute performance. Lors de l'utilisation de la pince, n'exercer aucun choc mécanique, vibration ou force intense sur le TC à pince.
- Si de la poussière ou tout autre corps étranger pénètre dans le TC à pince, ne pas resserrer trop fort les mâchoires de la pince. Retirer d'abord la poussière, puis s'assurer que les mâchoires se referment sans à-coup de chaque côté.

3.2 Procédure d'installation

Avertissement

Ne pas utiliser le CW120/121 pour des mesures dans des lieux relevant de la catégorie de mesure IV.

Attention

- En cas d'utilisation ou d'installation de deux ou plus instruments de mesure électrique CW120/ 121, maintenir une distance minimale de 10 mm (0,4 ») entre eux.
- En cas d'intégration d'un instrument de mesure à un panneau de distribution électrique ou dispositif similaire, maintenir une distance minimale de 10 mm (0,4 ») avec le mur et s'assurer qu'aucune pression excessive ne s'exerce sur les connecteurs mâles et femelles en saillie sur les bornes.

4.1 En cas d'utilisation avec une alimentation électrique en CA

\land Avertissement

- Utiliser uniquement le cordon d'alimentation fourni par le fabricant.
- Avant de brancher le cordon d'alimentation, s'assurer que la tension de la source d'alimentation corresponde à la tension nominale.
- Avant de brancher le cordon d'alimentation, s'assurer également que l'interrupteur d'alimentation du CW120 ou du CW121 soit désactivé.
- Si le CW120 ou le CW121 n'est pas utilisé pendant une période prolongée, débrancher le cordon d'alimentation de la prise.
- Ne placer aucune charge sur le cordon d'alimentation et éviter qu'il n'entre accidentellement en contact avec une source de chaleur.
- Veiller à bien tenir la fiche du cordon d'alimentation plutôt que de tenir ou de tirer le cordon d'alimentation lui même lors du débranchement de la prise.

4.2 En cas d'alimentation depuis l'entrée de tension

Avertissement

- Utiliser uniquement le câble d'alimentation optionnel (pièce n°98030) fourni par le fabricant.
- S'assurer que la tension du circuit à mesurer corresponde à la tension d'alimentation nominale (soit 100 à 240 V CA).
- Avant le branchement sur le circuit à mesurer, s'assurer que ce circuit est hors tension.
- Avant de brancher le câble d'alimentation, s'assurer également que l'interrupteur d'alimentation du CW120 ou du CW121 soit désactivé.
- Ne placer aucune charge sur le cordon d'alimentation et éviter qu'il n'entre accidentellement en contact avec une source de chaleur.

4.3 Écrans de démarrage

Attention

Lors de la mise sous tension du CW120 ou du CW121, l'écran contenant tous les segments puis l'écran autotest s'affichent sur l'instrument. (Ordre normal lors du démarrage.)

Vérifier que l'instrument fonctionne normalement.

5.1 Précautions de câblage du circuit à tester

\land Avertissement

- Lors du câblage du CW120 ou du CW121, ou lorsque celui-ci est hors tension, placer le circuit à tester hors tension. Il est extrêmement dangereux de brancher ou de débrancher une tension ou une pince aux sondes de courant électrique sans d'abord placer hors tension le circuit à tester.
- Veiller scrupuleusement à ne brancher aucun circuit en mode de tension aux bornes d'entrée de courant électrique et aucun circuit en mode de courant électrique aux bornes d'entrée de tension. Un mauvais branchement peut non seulement endommager le circuit ou l'équipement à tester mais aussi blesser le personnel.
- Ne pas appliquer une entrée dont le niveau excède le niveau suivant aux bornes d'entrée de tension ou de courant (la limite maximale diffère selon la sonde employée).

Entrée maximale admissible (continu)	
Entrée de tension :	495 Vrms
Entrée de courant – pour la sonde 96033 :	130 Arms
pour la sonde 96030 :	250 Arms
pour la sonde 96031 :	625 Arms
pour la sonde 96032 :	700 Arms (1 000 Arms pendant 5 minutes)
Régimes d'entrée pour chaque plage	
Entrée de tension :	150/300/450 V
Entrée de courant – pour la sonde 96033 :	5/10/20/50 A
pour la sonde 96030 :	20/50/100/200 A
pour la sonde 96031 :	50/100/200/500 A
pour la sonde 96032 :	200/500/1 000 A

\land Avertissement

- En cas d'utilisation d'un transformateur de tension (TT) ou de courant (TC) externe, s'assurer que ce transformateur peut supporter la tension mesurée. Veiller attentivement à ne pas laisser la phase secondaire du TC être court-circuitée pendant que celui-ci est électrifié. Sinon, une tension importante peut être générée dans cette phase secondaire et causer un grand danger.
- La plage maximale admissible de tension entrante aux bornes d'entrée de commande externe est de -0,5 à 5,5 V. Ne pas appliquer de tension excédant cette plage, sinon le circuit d'entrée sera endommagé. (Lors du câblage des bornes d'entrée, s'assurer que les bornes correctes soient câblées.)
- Ne pas utiliser d'autre sonde que les sondes de tension fournies avec le CW120/121 ou la pince prévue à cet effet sur les sondes de courant.
- Ne pas utiliser une pince sur une sonde avec un conducteur non isolé.

5.3 Câblage du circuit à tester avec un TT/TC externe

Avertissement

- Lors de l'utilisation d'un transformateur de courant externe (TC), veiller à éviter que la phase secondaire du TC ne soit court-circuitée pendant que la phase primaire est électrifiée. Sinon, une tension importante peut être générée dans cette phase secondaire et causer un grand danger.
- Un courant de mesure circule à travers les lignes en gras présentées dans le schéma ci-dessous. Pour ces lignes, utiliser des câbles disposant d'une marge adaptée de capacité de transport de courant.

5.5 Fonction de vérification du câblage

Avertissement

- Il importe de vérifier le câblage pour mesurer de façon correcte et sécurisée. Vérifier le câblage en se reportant au chapitre 3, « Précautions à prendre pour des mesures sécurisées », à la section 5.1, « Précautions de câblage du circuit à tester » et à la section 5.3, « Câblage du circuit à tester avec un TT/TC externe ».
- Vérifier le branchement des sondes de tension et, pour la pince sur les sondes de courant, vérifier les modèles (caractéristiques), la polarité H/L des connecteurs mâles et femelles ainsi que les flèches sur les pinces correspondant à la source aux directions de charge du circuit.
- Ne pas utiliser une pince sur une sonde de courant avec un conducteur non isolé.

6.1 Plages et caractères d'affichage

Avertissement

Lors d'un nouveau démarrage de force d'intégration, effacer le compteur d'énergie électrique (ainsi que que la durée d'intégration écoulée). Sinon, le compteur d'énergie électrique s'ajoutera aux valeurs précédentes. Pour plus de détails concernant l'effacement du compteur d'énergie électrique, se reporter à la section 9.2.3 « Effacement du compteur d'énergie électrique » ou à la section 7.2.4 « Effacement du compteur d'énergie électrique et réinitialisation du système » dans le chapitre 7 « Faire des réglages ».

11.2 RS-485

Avertissement

Couper l'alimentation lors du câblage des bornes pour éviter tout choc électrique.

Contents

Introduction1					
Checking Items in the Package2					
Precautions	for Safe Use of the Instrument6				
Utilisation en	1 Toute Securite				
Chapter 1. Pr	oduct Overview1-1				
1.1	Product Overview 1-1				
Chapter 2. Co	omponents and Indications2-1				
2.1	Front Panel and Connector Block 2-1				
2.2	Connecting Input Signals 2-3				
2.3	Operation Keys and Display 2-5				
2.4	Overrange and Other Marks Shown during Measurement 2-6				
Chapter 3. Pr	recautions for Safe Measurement3-1				
3.1	Handling Precautions 3-1				
3.2	Installation Procedure 3-3				
3.3	Maintaining High Precision of Measurement 3-5				
Chapter 4. Co	onnecting Power Supply and Turning Power On/Off4-1				
4.1	When Using AC Power Supply 4-1				
4.2	When Supplying Power from Voltage Input 4-3				
4.3	Startup Screens 4-4				
4.4	Basic Operation Flow 4-6				
Chapter 5. W	iring				
5.1	Precautions for Wiring the Circuit under Test 5-1				
5.2	Diagrams of Basic Wiring 5-2				
5.3	Wiring the Circuit under Test with External VT/CT 5-4				
5.4	Indication and Change of Wiring Method 5-5				
5.5	Wiring Check Function 5-6				
Chapter 6. Se	etting Ranges and Wiring Method6-1				
6.1	Ranges and Display Digits 6-1				
6.2	Changing Voltage Range Setting 6-6				
6.3	Changing Current Range Setting 6-7				
6.4	Changing Wiring Method Setting 6-10				
Chapter 7. Ma	aking Settings7-1				
7.1	Setting Items and Item Selection				
7.2	Setting Each Item				
7.3	Setting Name of Measured-data File 7-33				

Chapter 8. I	nstantaneous Value Measurement8-1
8.1	Measuring Instantaneous Values 8-1
8.2	Switching Display Contents
8.3	Saving Data 8-5
8.4	Frequency Measurement
8.5	Sampling Cycle and Integration Cycle 8-9
Chapter 9. E	electric Energy Measurement9-1
9.1	Measuring Electric Energy
9.2	Starting and Stopping Integration
9.3	Switching Display Contents
9.4	Saving Data
9.5	Backup Memory
9.6	External Control Input/Output
9.7	Meter Actions upon Power Failure and Recovery
Chapter 10.	PC Card 10-1
10.1	PC Card Specifications 10-1
10.2	Inserting and Removing PC Card 10-2
10.3	Storage Capacity 10-3
10.4	Formatting PC Card 10-4
10.5	Saving and Loading from/to PC Card 10-5
10.6	Interface with Personal Computer 10-7
Chapter 11.	Communication Functions11-1
11.1	RS-232 11-1
11.2	RS-485 11-6
11.3	Data Format 11-9
Chapter 12.	Auxiliary Functions12-1
12.1	Convenient Functions 12-1
12.2	Using Optional Printer 12-3
Chapter 13.	Troubleshooting13-1
13.1	Corrective Measures in Case of Failure 13-1
13.2	Error Codes 13-2
13.3	Sales in Each Country or Region 13-3
	13.3.1 Disposing the Product 13-3
	13.3.2 How to replace the batteries 13-3
	13.3.3 Authorized representative in the EEA 13-3
	13.3.4 "Measures for Administration of
	the Pollution Control of Electronic Information
	Products" of the People's Republic of China 13-4
Chapter 14.	Specifications14-1
14.1	Specifications of CW120/121 14-1
14.2	Specifications of Clamp-on Current Probes 14-9

	Circuit Block Diagram	
Appendix 2.	Communication Commands	App2-1
1. Comr	nands	App2-2
1.1	Messages	App2-2
1.2	Commands	App2-4
1.3	Response	App2-5
1.4	Data	App2-6
1.5	Messages on RS-485	App2-8
1.6	Communication Commands	•••
1.7	Detailed Description of Communication Commands	App2-12
	1.7.1 COMMunicate Group	App2-12
	1.7.2 SYSTem Group	App2-13
	1.7.3 INTEgrate Group	App2-15
	1.7.4 MEASure Group	App2-17
	1.7.5 STATus Group	App2-17
	1.7.6 MEMOry Group	App2-18
	1.7.7 CARD Group	App2-18
	1.7.8 Common Group	App2-19
2. Error	Messages	App 2-20
3. Com	mand Effectiveness Tables	App 2-24
Appendix 3.	File Structures and Data Items Printed	Арр3-1
1. Over	view	Арр 3-2
2. Meas	sured Data	Арр 3-3
2.	1 File Format	App 3-3
	2.1.1 File Identifier	App 3-3
	2.1.2 File Type	App 3-3
	2.1.3 Measurement Mode	App 3-3
	2.1.4 Data Field Titles and Data Formats	Арр 3-4
	2.1.5 Records of Power Failure/Restoration Information	App 3-5
2.	2 Print Format	Арр 3-6
	2.2.1 Print Item Titles and Data Formats	Арр 3-6
3. Setti	ngs	Арр 3-8
3.	1 File Format	App 3-8
3.:	2 Output Format and Data Values	App 3-9
3.5	3 Print Format	App 3-11
4. Autor	matic File Naming	App 3-12
	Reactive Power	
	Using Clamp 96034 or 96035	

1.1 Product Overview

The CW120/121 clamp-on power meters measure the fundamental electric power factors, namely, instantaneous power-related values and electric energy (watt-hours).

- CW120: Supports single-phase two-wire, single-phase three-wire, threephase three-wire, and single-phase tow-wire × 2 circuits.
- CW121: Supports single-phase two-wire, single-phase three-wire, threephase three-wire, three-phase four-wire, single-phase tow-wire × 2, and single-phase tow-wire × 3 circuits.

The following explains the features of the CW120/121, shows a schematic diagram of their functions, and describes the contents displayed on the screen in each measurement mode.

Features

• A Wealth of Functions

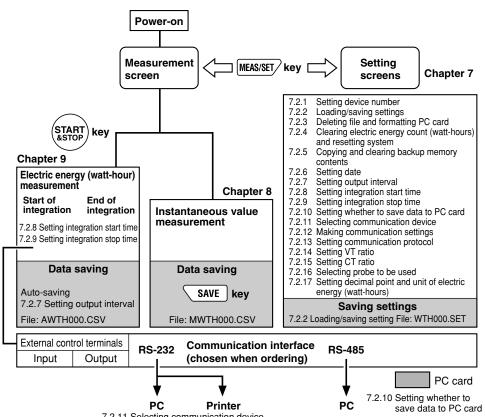
- Fast data saving for a long time: Data can be saved at 1-second intervals at fastest. A PC card slot for large removable memories such as flash ATA and compact flash cards allows measurement over a long time.
- Instantaneous value saving: Simply pressing the SAVE key will save the measured values.
- Wiring error check: The connections are checked and any error is displayed before the start of measurement.

Broad Ranges

- Voltage range: 150/300/450 V
- Current range: 4 types of clamp-on probes can be used. 96033 clamp-on probe: 5/10/20/50 A 96030 clamp-on probe: 20/50/100/200 A 96031 clamp-on probe: 50/100/200/500 A 96032 clamp-on probe: 200/500/1000 A

• Ease of Data Processing and Communication

Data can be saved to a PC card. Via communication, data can be transferred to a personal computer and the measurement conditions can be set from a computer. As the communication interface, you can choose (when ordering) RS-232 or RS-485; the RS-485 interface allows multiple CW120s and CW121s to be connected on the same line for remote monitoring.


• Compact Design

- The CW120/121 are sufficiently compact to be installed inside a cubicle or power distribution panel during measurement.
- The 96033 current-sensing probe with a 5 to 50 A range is designed for use in a narrow space, so is useful for measurement inside a power distribution panel with dense wiring.

• Easy-to-see Display Screen

Despite the compact body, the large back-lit LCD enables easy measurement in a dark place.

7.2.11 Selecting communication device

On-screen Information (Measured Data)

There are two measurement modes: instantaneous measurement and electric energy measurement. In the latter mode, the power is continuously measured and integrated during the preset start and stop times.

Instantaneous value measurement

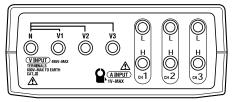
Item	Unit	Displayed Name
Rms voltage	V	V1, V2, V3 (differs depending on the wiring method)
Rms current	Α	A1, A2, A3 (differs depending on the wiring method)
Active power	W	W, W1, W2, W3 (differs depending on the wiring method)
Reactive power	Var	Var, Var1, Var2, Var3 (differs depending on the wiring method)
Power factor	_	PF, PF1, PF2, PF3: PowerFactor
		(differs depending on the wiring method)
Frequency	Hz	Hz (input frequency of V1)

1

Product Overview

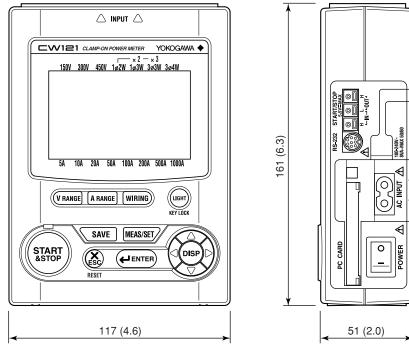
Item	Unit	Displayed Name
Active electric energy	Wh	Wh, Wh1, Wh2, Wh3 (differs depending on the wiring method)
Regenerative electric energy	Wh	Only saved; not displayed
Six items of instantaneous valu	ie measur	ement

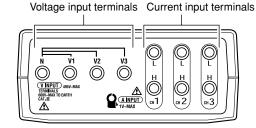
Electric energy measurement


The screen changes sequentially each time a cursor-movement (UP, DOWN, LEFT, or RIGHT) key is pressed as follows (display contents differ depending on the wiring method):

	Disular	Displayed Item					
Phase Wires	Display Position	Screen	Screen	Screen	Screen	Screen	Screen
		1	2	3	4	5	6
Single-phase two wires (1Ø2W)	Upper row	V1	W	PF	Wh		
	Lower row	A1	Var	Hz	TIME		
Single-phase three wires (1Ø3W)	Upper row	V1	A1	W	PF	Wh	
Three-phase three wires (3Ø3W)	Lower row	V2	A2	Var	Hz	TIME	
	Upper row	V1	V3	A2	W	PF	Wh
Three-phase four wires (3Ø4W)	Lower row	V2	A1	A3	Var	Hz	TIME
		V1	W1	PF1	Wh1	/	
Single-phase tow-wires	Upper row	VI	W2	PF2	Wh2		
×2 (1Ø2W×2)		A1	Var1		ТІМЕ		
	Lower row	A2	Var2	Hz		\bigvee	\vee
			W1	PF1	Wh1	/	
	Upper row	V1	W2	PF2	Wh2		/
Single-phase tow-wires			W3	PF3	Wh3		
×3 (1Ø2W×3)	[A1	Var1	[] /	
	Lower row	A2	Var2	Hz	TIME	/	
		A3	Var3			V	\bigvee

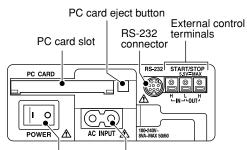
Dimensions


Connector Block


Unit: mm (approx. inches)

Side View

Front View


Connector Block

- CW120: Supports from single-phase two-wire to three-phase three-wire circuits Voltage input terminals: N, V1, V2 Current input terminals: CH1, CH2
- CW121: Supports from single-phase two-wire to three-phase four-wire circuits Voltage input terminals: N, V1, V2, V3

Current input terminals: CH1, CH2, CH3

Side Panels

Power switch Power supply connector Model with RS-232 interface

RS-232 interface

RS-232 connector

Internal control input (IN) terminals

Internal control output (OUT) terminals : Used to connect the integration start/stop output signals.

SEE ALSO

For details of external control input/output, see Section 9.6, "External Control Input/Output."

RS-485 interface

RS-485 screw terminals

: Used to connect a shielded cable and terminator.

PC card eject button

်ပည်လ

AC INPUT

Model with RS-485 interface

: Used to connect to a PC or printer

: Used to connect the integration

start/stop input signals.

PC card slot

∕∧

Power switch

(optional).

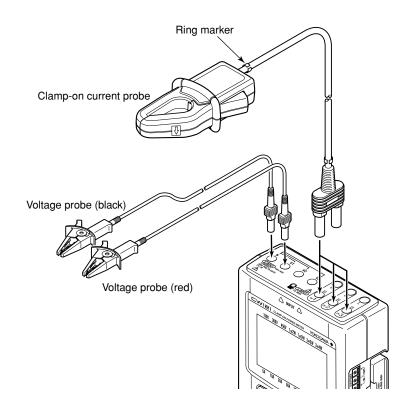
PC CARD

1 0

POWER

RS-485 screw

485


terminals

Power supply connector

SEE ALSO

For details of the RS-485 interface, see Section 11.2, "RS-485."

2.2 Connecting Input Signals

🖄 WARNING

- Thoroughly read Section 5.1, "Precautions for Wiring the Circuit under Test."
- When connecting the CW120/121, turn off the circuit under test. It is extremely dangerous to connect or disconnect probes to/from a live circuit.
- Be extremely careful not to connect any voltage-mode circuit to the current input terminals or any current-mode circuit to the voltage input terminals. Miswiring can result in not only damage to the circuit or equipment under test but also injury to personnel.
- Do not connect any probes which are not necessary (i.e., not used) for the current measurement, even though multiple probes can be connected to the CW120/121 at the same time.
- Do not use any probe other than the clamp-on current probes or voltage probes supplied.
- Do not use a clamp-on current probe for a non-insulated conductor.
- Ensure that the rating of the clamp-on current probe you use matches the rating of the measured current.
- Before connecting a clamp-on current probe to the CW120/121, make sure the plug is inserted with the correct H/L polarities.

• Differentiating between Voltage Probes

Voltage probes are differentiated by color for correct connections.

- · Probe for terminal N: Probe with a black alligator plug
- Probes for terminals V1 to V3: Probes with a red, yellow, or blue alligator plug

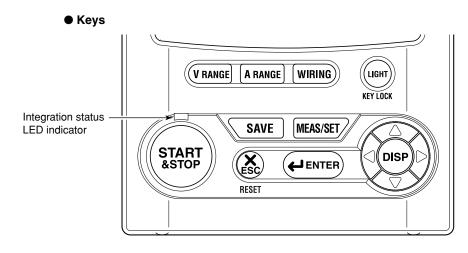
Accompanying probes

CW120: Three (black, red, and yellow) CW121: Four (black, red, yellow, and blue)

• Differentiating between Clamp-on Current Probes

Use accompanying ring markers (of four different colors) to differentiate clamp-on current probes for correct connections.

CW120: Terminals CH1 to CH2 CW121: Terminals CH1 to CH3


Use of Ring Markers

Attach ring markers of the same color to both ends of the probe cable for easy identification.

Be careful not to damage a probe when attaching ring markers.

2.3 Operation Keys and Display

Name	Key Symbol	Description
V RANGE key	V RANGE	Used to set and change the voltage range.
A RANGE key	A RANGE	Used to set and change the current range.
WIRING key	WIRING	Used to set and change the wiring method (phase lines).
		Also used to check the wiring. Pressing this key for three seconds or more accesses the wiring check screen.
LIGHT key	LIGHT	Switches on/off the backlight of the LCD.
		Also used to lock and unlock the keys. Pressing this key for three seconds locks the keys. To unlock, press the key again for three seconds or more.
SAVE key	SAVE	Saves the measured data during instantaneous value measurement.
MEAS/SET key	MEAS/SET	Switches over the display between the measurement and setting screens.
START&STOP key	START &STOP	Starts and stops integration.
ENTER key	ENTER	Confirms an entry such as a change to a setting.
ESC (escape) key		Cancels a setting and returns to the preceding screen.
	ESC	Also used to clear the electric energy count (watt-hours). Pressing this key for three seconds or more accesses the screen for clearing the electric energy count.
Cursor movement keys (UP/DOWN/LEFT/RIGHT keys)		In measurement screen: Switches the display contents. In setting screen: Changes the selection or number, or moves the cursor position (flashing digit) over digits.

Integration status LED indicator: Lit when the integration is carried out, and flashes when it is on stand-by.

2.4 Overrange and Other Marks Shown during Measurement

When the overrange mark appears with the range set to a maximum, it means that the input exceeds the maximum allowable level of the CW120/121. Do not apply an input level higher than the maximum allowable input level.

When measuring an input signal level exceeding the rated range, use a voltage transformer (VT) or current transformer (CT). When using a VT or CT, thoroughly read Section 5.3, "Wiring the Circuit under Test with External VT/CT."

• Overrange Indications

Vovr: Indicates an overvoltage.

This mark appears in the following conditions.

150/300 V range:	If the sampled value exceeds 200% of the rated
	voltage or if the rms value of the measured voltage
	exceeds 110% of the rated range

450 V range: If the sampled value exceeds 156% of the rated voltage or if the rms value of the measured voltage exceeds 110% of the rated range

Iovr: Indicates an overcurrent.

This mark appears if the sampled value exceeds 300% of the rated current or if the rms value of the measured current exceeds 110% of the rated range.

TIP

The **Vovr** mark appears when any one of the input signals from terminals V1 to V3 satisfies the conditions noted above.

The mark appears when any one of the input signals from terminals CH1 to CH4 satisfies the conditions noted above.

□r indication

The CW120/121 show *Dr* instead of a usual number representing the measured value if any one of the following conditions is met.

The number representing the measured value exceeds 9999, the maximum number displayed.

Voltage - 150/300 V range:

If the sampled value exceeds 200% of the rated voltage or if the rms value of the measured voltage exceeds 130% of the rated range

Voltage - 450 V range:

If the sampled value exceeds 156% of the rated voltage or if the rms value of the measured voltage exceeds 110% of the rated range

Current:

If the sampled value exceeds 300% of the rated voltage or if the rms value of the measured voltage exceeds 130% of the rated range

Displayed Item	Condition	Indication
Voltage	≤1.5 V	0 V
Current	≤0.4% of rated range	0 A
Active power	≤0.17% of rated range	0 W
Reactive power	≤0.17% of rated range	0 Var
Active electric energy	≤0.17% of rated range	0 Wh (integration stopped)

• Indications When the Measured Value Is Too Small

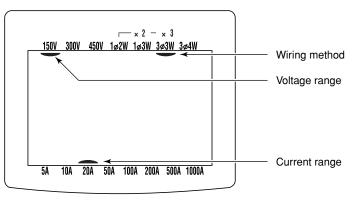
Displayed Item	Condition	Indication
Reactive power	V1 input \leq 10% of rated range; or frequency \leq 40 Hz or \geq 70 Hz	Var
Power factor	The voltage or current is displayed as $\Box r$; or V1 input \leq 10% of rated range; or frequency \leq 40 Hz or \geq 70 Hz	PF
Frequency	≤40 Hz or ≥70 Hz	Hz

TIP

Even when an instantaneous value is displayed as σr , the integration calculation is carried out continuously. The accuracy of the electric energy value, however, is undefined in this case.

• Indications of Setting Items

Mark appearing during setting mode: SET


Setting Item Displayed Mark

1.	Device number	NO.
2.	Loading and saving of settings	CONF
3.	Deletion of measured-data file and formatting of PC card	FILE
4.	Clearance of electric energy count (watt-hours) and resetting of system	RESET
5.	Copying and clearance of backup memory	MEM
6.	Date	DATE
7.	Output interval	NTER
8.	Integration start date and time	START
9.	Integration stop date and time	STOP
10.	Whether to save data to PC card	
11.	Selection of communication device	DEV
12.	Communication settings	COM
13.	Communication protocol setting	<u>Pr</u> oba
14.	VT ratio setting	VT
15.	CT ratio setting	CT
16.	Probe selection	•
17.	Decimal position and unit selections for electric energy (watt-hours)	ĎIGIT

• Indications during Measurement

Displayed Mark		
INTEG	Lights when integration is carried out; flashes when integration is on stand-	
	by.	
EXT	Lights when integration is controlled by external signals.	
FULL	Lights when PC card memory is full.	
MEM	Lights when the backup memory contains data.	
	Lights when the battery voltage is low.	
Å	Lights when the keys are locked.	
	Lights when data saving to the PC card is enabled; flashes during access	
	to the PC card.	
	Flashes during access to the PC when a PC is selected as the	
	communication device.	
	Flashes during access to the printer when a printer is selected as the	
_	communication device.	
VT CT	Lights when the VT ratio is set at a value other than 1.	
CT	Lights when the CT ratio is set at a value other than 1.	

Indications for current settings of voltage range, current range, and wiring method:

Displayed Message	Meaning
on E. SEArE	Appears during standby of integration when set to start at a set date and time.
Inter. Start	Appears during standby of integration when a past point of time is set as the integration start time and date and integration will begin at the nearest appropriate time (determined by the output interval).
InEEG. End	Appears when integration has finished normally with the set integration start/stop dates and times.
P_FR	Appears when a power failure has occurred (or the power has been turned off) during standby or integration.
дЯЕЯ СоРУ	Appears when the backup data is copied from the backup memory to the PC card.
EArd Err	Appears when a PC card is not inserted.
F ILE 000_0 I	Shows the file number and data record number when saving measured instantaneous values.
F ILE DDD	Shows the file number when integration begins in the case that data saving to a PC card is enabled but the filename is not specified.
F ILE dEF InE	Appears when integration begins in the case that data saving to a PC card is enabled and the filename is specified. The digits following "FILE" indicate "defined."

• Meanings of Messages

3.1 Handling Precautions

If you are a first-time user, be sure to read "Precautions for Safe Use of Instrument" on pages 4 and 5, Section 5.1, "Precautions for Wiring the Circuit under Test," and Section 5.3, "Wiring the Circuit under Test with External VT/CT."

• Do not place any load on the instrument.

Do not place any other equipment of a vessel filled with water on the instrument. Otherwise, the instrument may become defective.

• Moving the instrument

Before moving the instrument, make sure the power cord and all other cables are disconnected.

Input Terminals

Do not bring any electrified substance close to the signal terminals. Otherwise, the internal circuitry may be destroyed. Do not apply any mechanical shock to the signal terminals. Otherwise, such impact may be transformed into electrical noise and input to the instrument.

• Protection of Case and Operation Panel

Do not spray any volatile chemical on the case or operation panel. Do not leave any rubber or vinyl product in contact with the instrument for a prolonged period. Otherwise, the instrument may be discolored or deformed.

• Cleaning

When cleaning the case and/or operation panel, disconnect the power cord from the outlet. Then, wipe the surfaces of the case and/or operation panel with a soft clean cloth. Do not use chemicals such as benzine or paint thinner. Otherwise, the instrument may be discolored or deformed.

Display Screen

When the instrument is shipped from the factory, the display screen is covered with a protective film. Remove the film before you begin using the instrument.

• After Use

After use, disconnect the power cord from the outlet.

Precautions for Use of the Clamp

- The clamping CT (current transformer) is precision assembled to ensure high performance. When using the clamp, do not apply any intense mechanical shock, vibration or force to the clamping CT.
- If dust or any other foreign matter gets in the clamping CT, do not shut the clamping cores tight. First remove the dust and then make sure the clamping cores on both sides close smoothly.

3.2 Installation Procedure

Install the CW120/121 in a location that satisfies the following conditions.

- Indoors
- Ambient Temperature and Humidity
 - Ambient temperature: 0°C to 50°C
 - Ambient humidity: 5 to 85 % RH (no condensation)

When it is applied to UL.

- Ambient temperature: 0°C to 40°C
 Maximum relative humidity 80 % RH for temperature up to 31 °C
 decreasing linearly to 50 % RH relative humidity at 40 °C.
- Altitude of Location
 - · Altitude: 2000 m or less
- Measurement Category (CAT.)

🖄 WARNING

Do not use the CW120/121 for measurements in location that fall under measurement category IV.

The CW120/121 are designed for measurement category III.

Measurement category Other (O) applies to measurement of circuits that are not directly connected to a main power supply.

This category applies to measurement of secondary electric circuits in equipment across a transformer.

Measurement category II applies to measurement of circuits, such as household electric appliances and portable electric tools, that are connected to low-voltage installations.

Measurement category III applies to measurement of facility circuits, such as distribution boards and circuit breakers.

Measurement category IV applies to measurement of power source circuits, such as entrance cables to buildings and cable systems, for low-voltage installations.

Pollution Degree

The pollution degree of the CW120/121 in the operating environment is 2.

The pollution degree refers to the degree of adhesion of a solid, liquid, or gas which deteriorates withstand voltage or surface resistivity.

Pollution degree 2 applies to normal indoor atmospheres (with only nonconductive pollution).

- When using or installing two or more CW120/121 power meters, leave a distance of at least 10 mm (0.4") between them.
- When putting a power meter inside a power distribution panel or the like, leave a space of at least 10 mm (0.4") from a wall and ensure that excess pressure may not be applied to the protruding plugs and jacks on the terminals.

• Level Location

Do not install the CW120/121 in an unstable or inclined location; inaccurate measurements may result.

Other Conditions

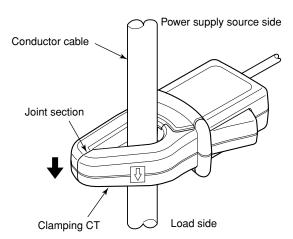
Do not install the CW120/121 in a location that is:

- Outdoors;
- exposed to direct sunlight or close to a heat source;
- · exposed to water or other liquids;
- close to a noise source such as high-voltage equipment or a power source;
- exposed to a relatively large amount of lampblack, steam, dust, or corrosive gas;
- exposed to frequent mechanical vibration;
- · close to a source of strong electromagnetic fields; or
- unstable.

Precautions for Safe Measurement

3.3 Maintaining High Precision of Measurement

To achieve a high precision of measurement, use the CW120/121 under the following conditions.


- Ambient temperature: 23° ±5°C
- Ambient humidity: 35 to 75% RH (no condensation)

When installing the CW120/121 in a location where the ambient relative humidity is 30% or less, use such equipment as an anti-static mat to prevent electrostatic discharge.

If you move the CW120/121 from an area of low temperature and humidity to an area of high temperature and humidity or if there is a sudden change in the ambient temperature, condensation may occur in the meter. If this happens, let the meter stand for at least one hour to allow it to adapt to the new ambient temperature and for condensation to evaporate. Then, start operating the meter.

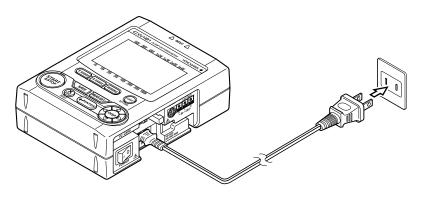
Relationship between Clamp and Conductor

- 1. When performing a measurement, hold the clamp-on probe so that the conductor cable runs through the center of the clamping CT.
- 2. Ensure that the orientation of the clamp to the direction of the conductor cable (from the power supply to the load) is correct, as shown in the figure.
- 3. Ensure that the clamping CT is properly closed.

4.1 When Using AC Power Supply

Before Connecting Power Supply

There is a danger of electric shock or damage to the meter. Observe the following warning notes.


- Use only the dedicated power cord supplied by the manufacturer.
- Before connecting the power cord, make sure the power-source voltage matches the rated supply voltage.
- Before connecting the power cord, also make sure the power switch of the CW120 or CW121 is turned off.
- If the CW120 or CW121 will not be used for a prolonged period, disconnect the power cord from the outlet.
- Do not place any load on the power cord or allow the power cord to come into accidental contact with a heat source.
- Be sure to hold the plug of the power cord, rather than holding and pulling the cord itself, when disconnecting it from the outlet.

• Procedure for Connecting Power Cord

Follow the steps below to connect the power cord.

- 1. Make sure the power switch of the CW120/121 is turned off.
- 2. Plug one end of the power cord supplied with the CW120/121 into the power supply jack on the side of the CW120/121.
- 3. Plug the other end of the power cord into a power outlet that meets the requirements below.

Required Power Ratings	
Rated supply voltage	100 to 240 V AC
Allowable supply voltage range	90 to 264 V AC
Rated power supply frequency	50 or 60 Hz
Allowable supply frequency range	48 to 63 Hz
Maximum power consumption	8 VA (at 240 V AC)

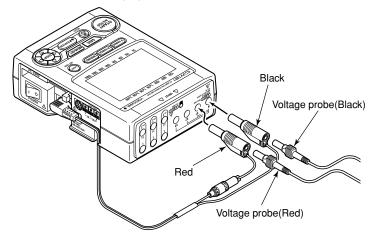
- When plugging and unplugging the power cord into/from the CW120 or CW121, ensure that the PC card eject button is depressed.
- The CW120 or CW121 will not work if the fuse built into the power supply circuit of the CW120 or CW121 has blown.
- Built-in fuses cannot be replaced by the user. For replacement, contact the vendor from which you purchased the instrument.

4.2 When Supplying Power from Voltage Input

\land ΝΟΤΕ

The 98030 power supply cable is not applicable to CE and UL.

• Before Connecting Power Supply


There is a danger of electric shock or damage to the meter. Observe the following warning notes.

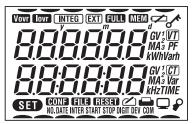
🖄 WARNING

- Use only the optional power cable (part No. 98030) supplied by the manufacturer.
- Make sure the voltage of the circuit to be measured matches the rated supply voltage (i.e., 100 to 240 V AC).
- Before connecting to the circuit to be measured, make sure the power to the circuit is turned off.
- Before connecting the power cable, make sure the power switch of the CW120 or CW121 is turned off.
- Do not place any load on the power cord or allow the power cord to come into accidental contact with a heat source.

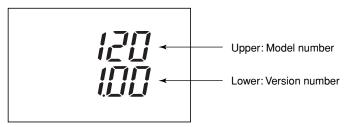
• Procedure for Connecting 98030 Power Supply Cable

- Follow the steps below to connect the 98030 power supply cable.
- 1. Make sure the power switch of the CW120/121 is turned off.
- 2. Insert the plug of the 98030 power supply cable into the power supply jack on the side of the CW120/121.
- Insert the black banana plug of the power supply cable into terminal N of the CW120/121, and red banana plug into terminal V1.
- 4. Connect the black plug of the voltage probe to the black banana plug, and the red plug of the probe to the red banana plug.
- 5. Check that the power to the circuit to be measured is turned off, and then connect the voltage probes to the circuit.

4.3 Startup Screens

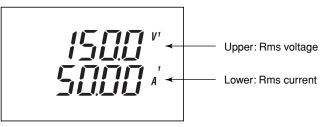

When you turn on the power to the CW120 or CW121, the instrument shows the all-segment-on screen followed by the selftest screen. (This is the normal startup sequence.)

Check that the instrument operates normally.


When you turn on the power to the CW120 or CW121, the screens shown in (1) to (3) below appear sequentially in order.

(1) All-segment On

All segments light for approximately 2 seconds, then the screen changes to the model and version display.


(2) Model and Version Display Screen

While the display is turning on all segments and showing the model and version numbers, the CW120/121 performs a self-test. If no error is found, the measurement screen appears.

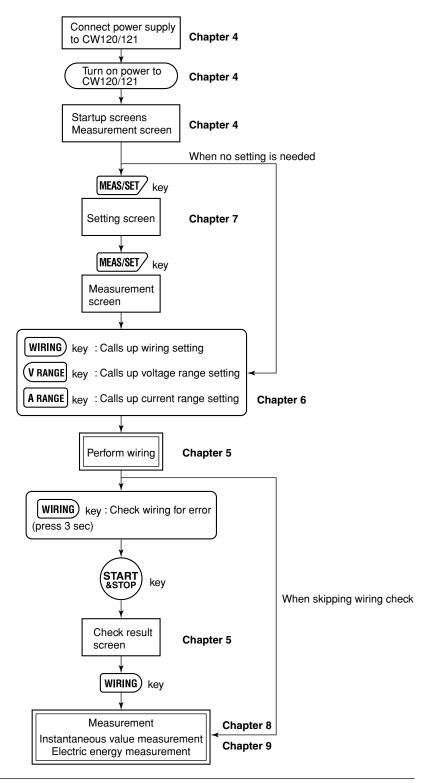
(3) Measurement Screen

Example of measurement screen

No.	Test Item	Error Number(s)
1	Backup SRAM check	Err.00 I
2	EEPROM check	Err.002 to Err.005
3	Real-time clock check	Err.006 to Err.007
4	Setting check	Err.009 to Err.010
5	External memory controller check	Err.008

• Self-test Details and Error Handling Test Items and Errors

If an error is found during the self-test, an error number is displayed. Confirm the error number and press any key, then the screen changes to the measurement screen.



- If an error is found with any of test item Nos. 1, 3, and 4 (backup SRAM check, real-time clock check, and setting check), the settings, date, and time will be initialized.
- The above situation may occur when the backup battery has become flat. When the 🔀 (low battery) sign is displayed on the screen, the backup battery needs to be replaced.
- The backup battery cannot be replaced by the user. For replacement, contact the vendor from which you purchased the instrument.
- The backup battery life is about 10 years.

SEE ALSO

For details of errors and the countermeasures, see Chapter 13, "Troubleshooting."

4.4 Basic Operation Flow

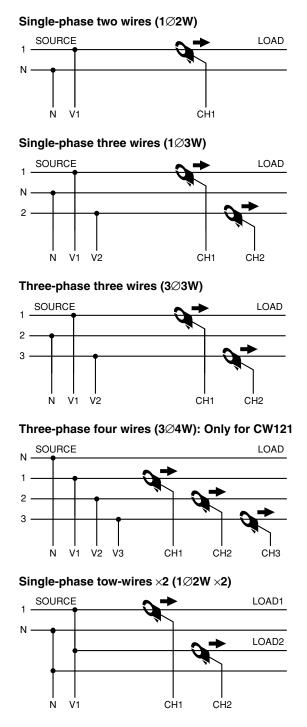
5.1 Precautions for Wiring the Circuit under Test

\land WARNING

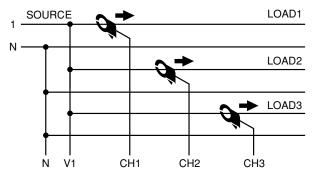
- When wiring the CW120 or CW121, or when it is turned off, turn off the circuit under test. It is highly dangerous to connect or disconnect voltage or clamp-on current probes without first turning off the circuit under test.
- Be extremely careful not to connect any voltage-mode circuit to the current input terminals or any current-mode circuit to the voltage input terminals. Miswiring can result in not only damage to the circuit under test or equipment under test but also injury to personnel.
- Do not apply any input level higher than the following to the voltage or current input terminals (the upper limit differs depending on the probe used):

Maximum allowable input (continuo	us) 495 Vrms
Voltage input:	495 VIIIS
Current input – for 96033 probe:	130 Arms
for 96030 probe:	250 Arms
for 96031 probe:	625 Arms
for 96032 probe:	700 Arms (1000 Arms for 5 minutes)
Input ratings for each range	
Voltage input:	150/300/450 V
Current input – for 96033 probe:	5/10/20/50 A
for 96030 probe:	20/50/100/200 A
for 96031 probe:	50/100/200/500 A
for 96032 probe:	200/500/1000 A

SEE ALSO

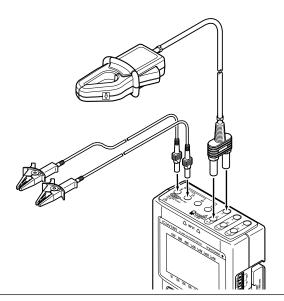

For details, see Chapter 14, "Specifications." For details, see Appendix 5, "Using Clamp 96034 or 96035."

🖄 WARNING


- If using an external voltage transformer (VT) or current transformer (CT), make sure the transformer can adequately withstand the voltage being measured. Be extremely careful not to allow the secondary stage of the CT to become open-circuited while the CT is being electrified. Otherwise, a high-voltage may develop on the secondary stage, causing extreme danger.
- The maximum allowable input voltage range of the external control input terminals is -0.5 to 5.5 V. Do not apply voltages exceeding this range, otherwise the input circuitry may be damaged. (When wiring the input terminals, ensure that you wire the right terminals.)
- Do not use any probe other than the voltage probes supplied with the CW120/121 or dedicated clamp-on current probes.
- Do not use a clamp-on probe with any non-insulated conductors.

5.2 Diagrams of Basic Wiring

This section explains the methods of basic wiring using illustrations.


Single-phase tow-wires $\times 3$ (1 $\oslash 2W$ $\times 3$): Only for CW121

The table below shows the correspondences between the voltage/current units (sets of a unit + input number) displayed on the screen and the input terminals for voltage and clamp-on current probes.

Wiring Method (Phase Lines)	Voltage Inputs	Current Inputs
Single-phase two wires (1Ø2W)	Terminals: N-V1 Units: V1	Terminals: CH1 Units: A1
Single-phase three wires $(1 \varnothing 3W)$	Terminals: N-V1, N-V2 Units: V1, V2	Terminals: CH1, CH2 Units: A1, A2
Three-phase three wires (3Ø3W)	Terminals: N-V1, N-V2 Units: V1, V2	Terminals: CH1, CH2 Units: A1, A2
Three-phase four wires* (3Ø4W)	Terminals: N-V1, N-V2, N-V3 Units: V1, V2, V3	Terminals: CH1, CH2, CH3 Units: A1, A2, A3
Single-phase tow-wires ×2 (1Ø2W ×2)	Terminals: N-V1 Units: V1	Terminals: CH1, CH2 Units: A1, A2
Single-phase tow-wires* $\times 3 (1 \varnothing 2W \times 3)$	Terminals: N-V1 Units: V1	Terminals: CH1, CH2, CH3 Units: A1, A2, A3

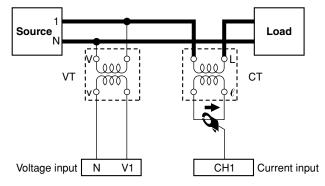
* Only for CW121

5.3 Wiring the Circuit under Test with External VT/CT

- When using an external current transformer (CT), be careful not to allow the secondary stage of the CT to become open-circuited while the primary stage is being electrified. Otherwise, a high-voltage may develop on the secondary stage, causing extreme danger.
- A measuring current flows through the bold lines shown in the figure below. For these lines, use wires having an adequate margin of current-carrying capacity.

If the maximum voltage or current level being measured exceeds the maximum measurement range of the CW120/121, use an external voltage transformer (VT) or current transformer (CT). This strategy enables the voltage or current levels beyond the maximum range to be measured.

When to use a VT and how?


If the maximum voltage of the circuit exceeds 450 V, connect an external VT and connect the secondary stage of the VT to the voltage input terminals.

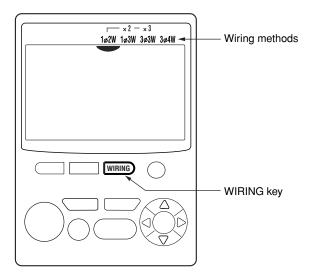
When to use a CT and how?

If the maximum current of the circuit exceeds the following value, connect an external CT and clamp the secondary stage wire of the CT with a current probe.

96033 probe:	50 A (rated at 5/10/20/50 A)
96030 probe:	200 A (rated at 20/50/100/200 A)
96031 probe:	500 A (rated at 50/100/200/500 A)
96032 probe:	1000 A (rated at 200/500/1000 A)

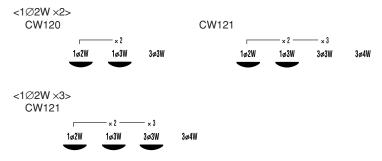
Example for single-phase two wires (1Ø2W)

Scaling


When using a VT and/or CT, you can set the VT ratio and/or CT ratio to display the readings of the primary circuit voltages and currents. (This is called the scaling function.)

SEE ALSO

For details of how to set the CT and VT ratios, see Sections 7.2.14 and 7.2.15, "Setting VT Ratio" and "Setting CT Ratio."


5.4 Indication and Change of Wiring Method

The abbreviations for wiring methods are labeled immediately above the screen as $1\emptyset 2W$, $1\emptyset 3W$, $3\emptyset 3W$, $3\emptyset 4W$, $1\emptyset 2W \times 2$, and $1\emptyset 2W \times 3$ ($3\emptyset 4W$, $1\emptyset 2W \times 3$ are not included for the CW120), and the — sign on the screen indicates the wiring method currently selected in the CW120/121.

To change the wiring method, press the **V**Range key. Each time you press the WIRING key, the — moves to change the selected wiring method.

Indication of wiring method.

5.5 Wiring Check Function

- It is important to check the wiring for correct and safe measurement. Check the wiring with reference to Chapter 3, "Precautions for Safe Measurement," Section 5.1, "Precautions for Wiring the Circuit under Test," and Section 5.3, "Wiring the Circuit under Test with External VT/ CT."
- Check the connections of voltage probes, and for clamp-on current probes, check the models (ratings), H/L polarities of the plugs and jacks, and the arrow symbols on the clamps corresponding to the source-to-load directions of the circuit.
- Do not use a clamp-on current probe with any non-insulated conductor.

Check Items

The following items are checked and judged, and then the result of each check item will be displayed as shown on the next page.

For each voltage input:

- 1. Existence of input voltages
- 2. Frequency detection
- 3. Voltage phase sequence

For each current input:

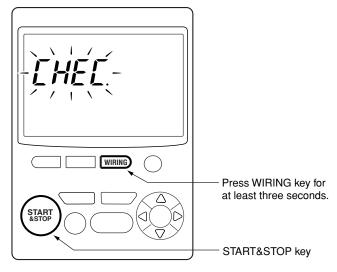
- 1. Existence of input currents
- 2. Clamp directions

- Measurement is not performed during the wiring check.
- The wiring check cannot be carried out during continuous measurement.

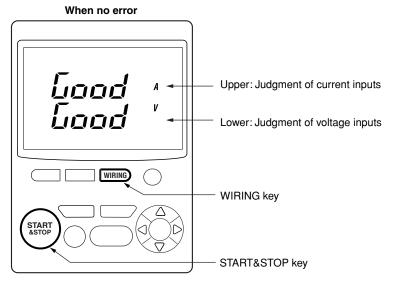
• Check Items and Criteria Voltage Inputs

Item	Criteria	Error Message (in lower row)		
1. Existence of voltage inputs	 If an input level is 10% or less of the range, then an error results. Else, the frequency detection takes place.	Error message	v	
2. Frequency detection	 If the frequency of input V1 exceeds the 40 to 70 Hz range, then an error results. Else, the voltage phase sequence check takes place. 	Error message	Hz	
3. Voltage phase sequence	 For 1Ø2W or 1Ø3W: This item is not checked. For 3Ø3W: If V2 leads V1 by more than approximately 80 degrees or less than approximately 40 degrees, an error results. For 3Ø4W (only for the CW121): If V2 lags behind V1 by more than approximately 140 degrees or less than approximately 100 degrees, an error results. Or if V3 leads V1 by more than approximately 140 degrees or less than approximately 140 degrees, an error results. 	Error message Err.	v	
	• Else, "Good" is displayed.	Lood	v	

Current Inputs

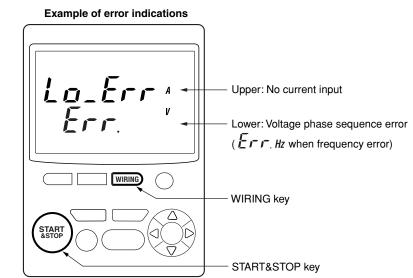

Item	Criteria	Error Message (in lower row)	
1. Existence of input currents	 If an input level is 1% or less of the range, then an error results. Else, the clamp direction check takes place.	Error message	A
2. Clamp directions	 For any wiring method other than 3Ø3W, if the power of one or more phases is negative, an error results. For 3Ø3W, if the whole power is negative, an error results. 	Error message	A
	• Else, "Good" is displayed.	Good	A

🕭 ΝΟΤΕ


- As the wiring is judged on the above criteria, an error may result even when wiring is correct or wrong wiring may pass the check.
- When a measured value appears to be abnormal, check the above criteria and wiring again.

• Carrying out Wiring Check

(1) When the measurement screen is displayed, press the wink key for at least three seconds, and " **LHEL**." appears on the screen and flashes.



- (2) Press the (1) key. Then, " **LHEL**." stops flashing and the wiring check begins.
- (3) When no error has been found, " **L**DDD' " is displayed on both the upper and lower rows. Press the WIRNO key to return to the measurement screen.

When an error is displayed, refer to the table on page 5-8 and check the meaning of the error. Check and correct the connections, then press the (START) key to carry out the wiring check again.

To return to the measurement screen, press the WIRING key.

6.1 Ranges and Display Digits

The following describes the voltage, current, power, and electric energy ranges.

• Voltage Range

150/300/450 V

Current Range

96033 clamp-on probe: 5/10/20/50 A 96030 clamp-on probe: 20/50/100/200 A 96031 clamp-on probe: 50/100/200/500 A 96032 clamp-on probe: 200/500/1000 A

• Range of Active and Reactive Powers

The range of active and reactive powers is determined by the voltage range, current range, and wiring method set as follows:

Wiring Method (Phase Lines)	Power Range
Single-phase two wires Single-phase tow-wires × 2 Single-phase tow-wires × 3*	Voltage range \times current range
Single-phase three wires Three-phase three wires	Voltage range \times current range \times 2
Three-phase four wires*	Voltage range \times current range \times 3

*Only for CW121

• Range Table (Table of Full Scales) – Rated Power

The table below shows the rated powers corresponding to combinations of voltage and current ranges.

		Current (A) Range							
							96032 Pro	be (200–1	000 A)
Voltage	Phase		96031 Probe (50–500 A)						
(V) Range	Lines		96030 Probe (20–200 A)						
nunge		96033 Probe (5–50 A))					
		5.000 A	10.00 A	20.00 A	50.00 A	100.0 A	200.0 A	500.0 A	1.000 kA
	1Ø2W								
	1Ø2W×2	750.0 W	1.500 kW	3.000 kW	7.500 kW	15.00 kW	30.00 kW	75.00 kW	150.0 kW
150 V	$1 \varnothing 2W \times 3^*$								
150 V	1Ø 3W	1.500 kW	3.000 kW	6.000 kW	15.00 kW	30.00 kW	60.00 kW	150.0 kW	300.0 kW
	3Ø3W	1.500 kW	3.000 kW	6.000 kW	15.00 kW	30.00 kW	60.00 kW	150.0 kW	300.0 kW
	3Ø4W*	2.250 kW	4.500 kW	9.000 kW	22.50 kW	45.00 kW	90.00 kW	225.0 kW	450.0 kW
	1Ø2W								
	1Ø2W×2	1.500 kW	3.000 kW	6.000 kW	15.00 kW	30.00 kW	60.00 kW	150.0 kW	300.0 kW
300 V	$1 \varnothing 2W \times 3^*$								
000 1	1Ø 3W	3.000 kW	6.000 kW	12.00 kW	30.00 kW	60.00 kW	120.0 kW	300.0 kW	600.0 kW
	3Ø3W	3.000 kW	6.000 kW	12.00 kW	30.00 kW	60.00 kW	120.0 kW	300.0 kW	600.0 kW
	3Ø4W*	4.500 kW	9.000 kW	18.00 kW	45.00 kW	90.00 kW	180.0 kW	450.0 kW	900.0 kW
	1Ø2W								
450 V	1Ø2W×2	2.250 kW	4.500 kW	9.000 kW	22.50 kW	45.00 kW	90.00 kW	225.0 kW	450.0 kW
	$1 \varnothing 2W \times 3^*$								
-30 v	1Ø3W	4.500 kW	9.000 kW	18.00 kW	45.00 kW	90.00 kW	180.0 kW	450.0 kW	900.0 kW
	3Ø3W	4.500 kW	9.000 kW	18.00 kW	45.00 kW	90.00 kW	180.0 kW	450.0 kW	900.0 kW
	3Ø4W*	6.750 kW	13.50 kW	27.00 kW	67.50 kW	135.0 kW	270.0 kW	675.0 kW	1.350 MW

* Only for CW121

TIP

For reactive power, the same table applies but the units of measurement are different.

Units of reactive power: Var, kVar, MVar

If either or both of the VT and CT ratios are set to a value other than 1, and if the product of the following formula exceeds 9999, the decimal point is incremented by one:

Rated power in table \times VT ratio \times CT ratio \times 1.3

• Display Digits

The tables below show the display digits, decimal point positions, and units of measurement.

Voltage - Maximum Display Digits: 4

Range × VT Ratio (× 1.3)*	Decimal Point Position and Unit
150 to 999.9 V	999.9 V
1 to 9.999 kV	9.999 kV
10 to 99.99 kV	99.99 kV
100 to 999.9 kV	999.9 kV
1 to 4.5 MV	4.500 MV

Current - Maximum Display Digits: 4

Range \times CT Ratio (\times 1.3)*	Decimal Point Position and Unit
5 to 9.999 A	9.999 A
10 to 99.99 A	99.99 A
100 to 999.9 A	999.9 A
1 to 9.999 kA	9.999 kA
10 to 99.99 kA	99.99 kA
100 to 999.9 kA	999.9 kA
1 to 9.999 MA	9.999 MA
10 MA	10.00 MA

Frequency - Maximum Display Digits: 4

Input Frequency	Decimal Point Position and Unit
40 to 70 Hz	70.00 Hz

Power - Maximum Display Digits: 4

Rated Power ×	VT Ratio ×	CT Ratio (× 1.3)*	Decimal Point Position and Unit
975	to 999.9	W	999.9 W
1	to 9.999	W	9.999 W
10	to 99.99	W	99.99 W
100	to 999.9	W	999.9 W
1	to 9.999	kW	9.999 kW
10	to 99.99	kW	99.99 kW
100	to 999.9	kW	999.9 kW
1	to 9.999	MW	9.999 MW
10	to 99.99	MW	99.99 MW
100	to 999.9	MW	999.9 MW
1	to 9.999	GW	9.999 GW
10	to 99.99	GW	99.99 GW
100	to 999.9	GW	999.9 GW
1000	to 9999	GW	9999 GW

* Multiply by 1.3 only when the CT or VT ratio is a value other than 1.

TIP

For reactive power, the same table as for the power applies but the units of measurement are different. Units of reactive power: Var, kVar, MVar, GVar

Power Factor - Maximum Display Digits: 4

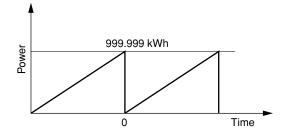
Power Factor	Decimal Point Position and Unit	
-1 to 1	1.000	

• Decimal Point Position and Unit for Electric Energy

The decimal point position and unit of measurement for electric energy can be set via the screen (see Section 7.2.17, "Selecting Decimal Point Position and Unit for Electric Energy").

- Decimal point: Selectable from 000.000, 0000.00, 00000.0, and 000000
- Unit: Selectable from Wh, kWh, MWh, and GWh

By selecting **STANDARD**, you can also let the CW120/121 automatically set them as follows.

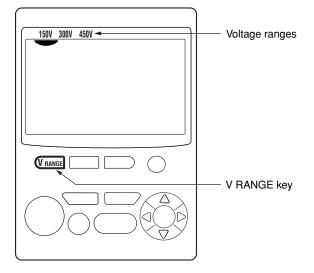

Rated Power \times VT Ratio \times CT Ratio(\times 1.3)*	Decimal Point Position and Unit for Electric energy (Max. Count)
1 to 9.999 W	0.00 to 9999.99 Wh
10 to 99.99 W	0.0 to 99999.9 Wh
100 to 999.9 W	0.000 to 999.999 kWh
1 to 9.999 kW	0.00 to 9999.99 kWh
10 to 99.99 kW	0.0 to 99999.9 kWh
100 to 999.9 kW	0.000 to 999.999 MWh
1 to 9.999 MW	0.00 to 9999.99 MWh
10 to 99.99 MW	0.0 to 99999.9 MWh
100 to 999.9 MW	0.000 to 999.999 GWh
1 to 9.999 GW	0.00 to 9999.99 GWh
10 to 99.99 GW	0.0 to 99999.9 GWh
100 to 999.9 GW	0 to 999999 GWh

* Multiply by 1.3 only when the CT or VT ratio is a value other than 1.

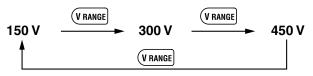
SEE ALSO

For the setting procedures, see Chapter 7, "Making Settings."

When the electric energy count has reached the maximum, the count will be reset to zero as illustrated below.



When newly starting integrating power, clear the electric energy count (and the elapsed time of integration). Otherwise, the electric energy count will be added to the previous value. For details of how to clear the electric energy count, see Section 9.2.3, "Clearing Electric Energy Count," or Section 7.2.4, "Clearing Electric Energy Count and Resetting System," in Chapter 7, "Making Settings."

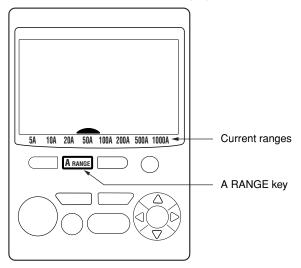

6.2 Changing Voltage Range Setting

Procedure to Change Voltage Range Setting

(1) The sign is displayed uppermost on the screen, under the voltage range currently selected. To change the range, press the VRange key when the measurement screen is displayed.

Each press of the $\overline{v_{\text{Range}}}$ key changes the range selection sequentially as follows:

Default: 150 V


TIP

- If a change to the range setting is incompatible with the conditions derived from other settings, *SELErr* is displayed and the change is ineffective. First change other settings such as the current range, VT ratio, CT ratio, and wiring method, then change the voltage range.
- The voltage range cannot be changed during continuous measurement.
- The voltage range cannot be changed when the electric energy count is not zero. Pressing the (Plange key at this time causes *Err.*][]] to appear on the screen (this will disappear and the measurement screen will return when any key is pressed). Clear the electric energy count first. For details of how to do this, see Section 9.2.3, "Clearing Electric Energy Count," or Section 7.2.4, "Clearing Electric Energy Count and Resetting System," in Chapter 7, "Making Settings."

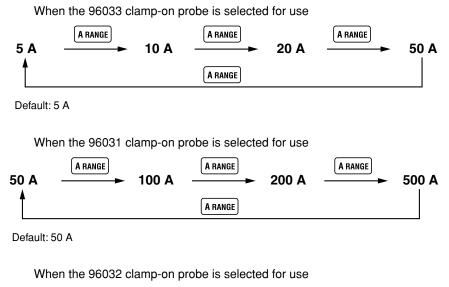
6.3 Changing Current Range Setting

Procedure to Change Current Range Setting

(1) The sign is displayed lowermost on the screen, above the current range currently selected. To change the range, press the Range key when the measurement screen is displayed.

Each press of the Arange key changes the range selection sequentially as follows:

When the 96030 clamp-on probe is selected for use



Default: 20 A

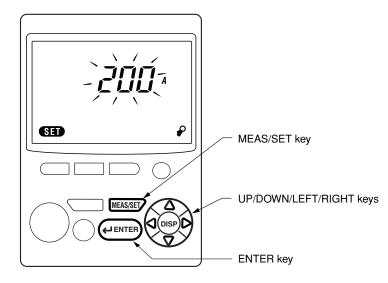
TIP

- If a change to the range setting is incompatible with the conditions derived from other settings, *SELErr* is displayed and the change is ineffective. First change other settings such as the current range, VT ratio, CT ratio, and wiring method, then change the voltage range.
- The voltage range cannot be changed during continuous measurement.
- The voltage range cannot be changed when the electric energy count is not zero. Pressing the ARange key at this time causes E_{rr} $\exists \square \square$ to appear on the screen (this will disappear and the measurement screen will return when any key is pressed). Clear the electric energy count first. For details of how to do this, see Section 9.2.3, "Clearing Electric Energy Count," or Section 7.2.4, "Clearing Electric Energy Count and Resetting System," in Chapter 7, "Making Settings."

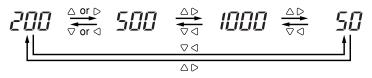
6.3 Changing Current Range Setting

Default: 200 A

• Selecting Clamp-on Current Probe to Be Used


The current ranges that can be selected vary with the clamp-on current probe used. The probe selection can be changed from a setting screen.

Clamp-on Current Probe Model	Setting	Rating (Ranges)
96033	50 A	5/10/20/50 A
96030	200 A	20/50/100/200 A
96031	500 A	50/100/200/500 A
96032	1000 A	200/500/1000 A


Default: 200 A

Procedure to Change Probe Selection

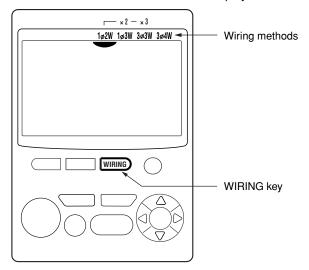
- (1) Press the MEASURET key when the measurement screen is displayed. The screen switches to the setting item selection screen and the **SET** sign appears in the lower left of the screen.
- (2) Using the △ ▽ < ▷ keys, make the ♀ mark (in the lower right) and its current setting appear on the screen. Then, press the events key. The number representing the currently selected clamp model flashes.</p>

(3) Using the $\triangle \bigtriangledown \lhd \bigcirc$ keys, select the number corresponding to the desired clamp-on current probe.

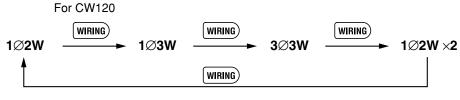
- (4) Press the *enter* key.
- (5) Press the MEASSET key to return to the measurement screen. The range is changed according to the new probe selected.

SEE ALSO

For details of the clamp selection, see Chapter 7, "Making Settings."

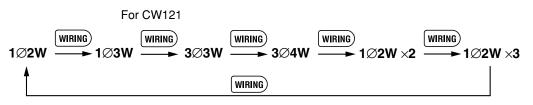

TIP

- If a change to the clamp-on current probe selection is incompatible with the conditions derived from other settings, the change is ineffective. First change other settings such as the voltage range, VT ratio, CT ratio, and wiring method, then change the probe selection.
- The current probe cannot be changed during continuous measurement.
- The current probe cannot be changed when the electric energy count is not zero, and an attempt to change causes *Err. 300* to appear on the screen (this will disappear and the measurement screen will return when any key is pressed). Clear the electric energy count first. For details of how to do this, see Section 9.2.3, "Clearing Electric Energy Count," or Section 7.2.4, "Clearing Electric Energy Count and Resetting System," in Chapter 7, "Making Settings."


6.4 Changing Wiring Method Setting

• Procedure to Change Wiring Method Setting

(1) The <u>sign</u> is displayed uppermost on the screen, above the wiring method currently selected. To change the method, press the <u>wiring</u> key when the measurement screen is displayed.


Each press of the WIRING key changes the wiring method selection sequentially as follows:

Default: 3Ø3W

TIP


- If a change to the wiring method setting is incompatible with the conditions derived from other settings, the change is ineffective. First change other settings such as the voltage range, current range, VT ratio, and CT ratio, then change the wiring method.
- The wiring method cannot be changed during continuous measurement.
- The wiring method cannot be changed when the electric energy count is not zero. Pressing the wire key at this time causes E_{rr} in to appear on the screen (this will disappear and the measurement screen will return when any key is pressed). Clear the electric energy count first. For details of how to do this, see Section 9.2.3, "Clearing Electric Energy Count," or Section 7.2.4, "Clearing Electric Energy Count and Resetting System," in Chapter 7, "Making Settings."

Default: 3Ø3W

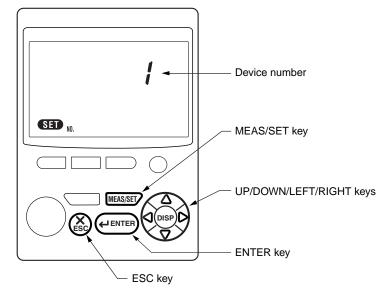
SEE ALSO

For details of the wiring methods, see Chapter 5, "Wiring."

7.1 Setting Items and Item Selection

Setting Items

Before starting measurement, the following measurement condition and data saving settings should be made as necessary.


Setting Item	Display Mark
1. Device number	NO.
2. Loading and saving of settings	CONF
3. Deletion of measured-data file and formatting of PC card	FILE
4. Clearance of electric energy count and resetting of system	RESET
5. Copying and clearance of backup memory	MEM
6. Date	DATE
7. Output interval	INTER
8. Integration start date and time	START
9. Integration stop date and time	STOP
10.Data saving to PC card	
11.Communication device selection	DEV
12.Communication settings	COM
13.Communication protocol setting	Proto
14.VT ratio setting	VT
15.CT ratio setting	CT
16.Clamp-on current probe selection	P
17.Decimal point position and unit selections for electric energy	DIGIT

TIP

The Setting Check Sheet in the back of *Operation Guide* (IM CW120P-E) lists necessary settings and their available selections. Use this sheet for grasping the setting conditions and for efficient setting on site.

• Keys Used for Setting

The keys used for setting are described below.

MEAS/SET key

Used to toggle the display between measurement and setting screens. The **SET** mark is displayed on a setting screen.

HENTER key

Used to fix a selection.

🛞 key

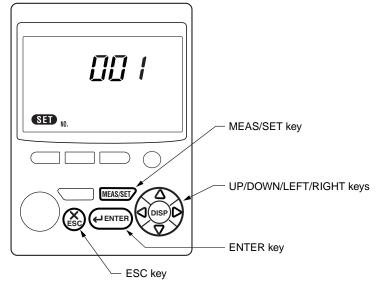
Used to cancel a setting. Pressing this key returns to the preceding screen.

$riangle abla \mathsf{keys}$

Used to:

- · Change the setting item displayed.
- Change a number.
- Change a setting.

\bigcirc keys


Used to:

- Change the setting item displayed.
- · Select a digit.
- · Change a setting.

Setting Procedure

(1) Press the MEANSET key. The display changes from the measurement screen to the screen for setting (the setting item selection screen) and the **SET** sign appears in the lower left.

Device number setting screen

(2) Using the $\triangle \bigtriangledown \lhd \bigcirc$ keys, select the desired item, and then press the events key. Each time one of the $\triangle \bigtriangledown \lhd \bigcirc$ keys is pressed, the setting item changes sequentially as follows.

To cancel a setting after pressing the $\underbrace{e^{\text{ENTER}}}$ key, press the \bigotimes key. The setting item selection screen then returns.

(3) After making necessary changes to the settings, press the MEASSET key to return to the measurement screen.

- The MEM (backup memory setting) is skipped if no data exists in the backup memory (and the MEM mark is not lit on the measurement screen).
- The DEV (communication device) setting is skipped if your CW120/121 model has an RS-485 interface.
- The setting item that is selected by default when the screen changes from the measurement screen, is the item selected last time the measurement screen was returned from a setting screen.
- In the electric energy measurement mode, the settings can be viewed only for checking and cannot be modified.

7

Making Settings

TIP

7.2 Setting Each Item

7.2.1 Setting Device Number (N0,)

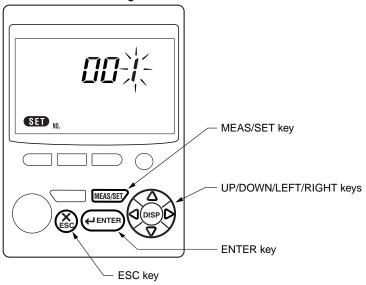
Description

The device number is used for identifying each power meter (CW120/121) when monitoring a specific power with two or more CW120s and CW121s, and also used as the device address when using RS-485 communication.

The device number consists of three digits. It is set to 001 by default and can be set to any number from 001 to 999.

TIP

When using RS232 communication, in cases when the communication protocol is other than CW120/ 121 exclusive, Device number is used as the Device Address.


e number limits
9
1
1
7
7
ł

Communication protocols and device number limits

Procedure

Using the △ ▽ < ▷ keys in the setting item selection screen, make the N0. mark and its corresponding setting appear on the screen. Then, press the verse key. The rightmost digit begins flashing.

Device Number Setting Screen

- (2) Using the \bigcirc keys, select the digit to be changed. The selected digit flashes.
- (3) Using the riangle keys, change the number of the selected digit.
- (4) After making necessary changes, press the *enter* key. The new device number is then set and the setting item selection screen returns.

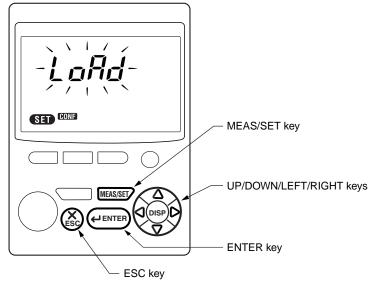
To cancel the changes, press the $\textcircled{\otimes}$ key. The setting item selection screen also returns.

7.2.2 Loading and Saving Settings (CONF)

Description

Select $L \Box R d$ to load settings from a PC card. Select SR L E to save settings to a PC card.

The file number consists of three digits and can be set to any number from 000 to 029.

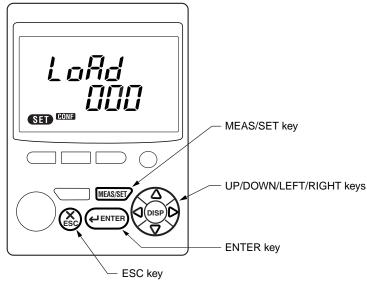

TIP

Name of setting file: WTHnnn.SET where nnn is the file number you set, from 000 to 029

Procedure

(1) Using the $\triangle \bigtriangledown \triangleleft \bigcirc$ keys in the setting item selection screen, make the **CONF** mark to appear on the screen. Then, press the **energy** key. *L* $\alpha H d$ begins flashing.

Loading/Saving Selection Screen

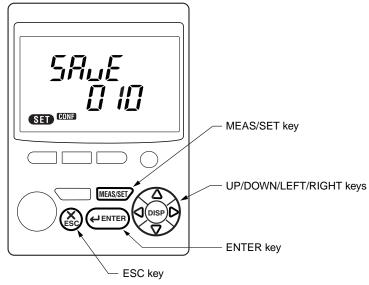

(2) Using the \bigcirc keys, select $L \Box A d$ or $S A \sqcup E$.

(3) Press the *event* key to confirm the selection. A three-digit number appears on the lower row, allowing you to set the file number of the file to/ from which you want to save/load settings.

To cancel loading/saving, press the $\textcircled{\otimes}$ key. The setting item selection screen returns.

Loading

File Number Setting Screen for Loading


- (4) Specify the file number in accordance with the steps below.
- (5) Using the < ▷ keys, select the digit to be changed. The selected digit flashes.</p>
- (6) Using the $\triangle \nabla$ keys, change the number of the selected digit.
- (7) After making necessary changes, press the *enter* key. The settings are then loaded and the setting item selection screen returns.

You cannot select the file number of a file that does not exist. Selecting such a file number returns to the screen for file number setting.

To cancel loading, press the $\textcircled{\otimes}$ key. The screen in step (1) returns.

Saving

File Number Setting Screen for Saving

- (4) Specify the file number in accordance with the steps below.
- (5) The smallest file number within the unused numbers from 000 to 029 is displayed.
- (6) If the displayed number is fine, press the *enter* key.
- (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the
 (7) If you want to specify a different file number, using the </l
- (8) Using the $\triangle \nabla$ keys, change the number of the selected digit.
- (9) After making necessary changes, press the *eterrer* key. The settings are then saved and the setting item selection screen returns.

You cannot select a file number that has already been used. Selecting such a file number returns to the screen for file number setting.

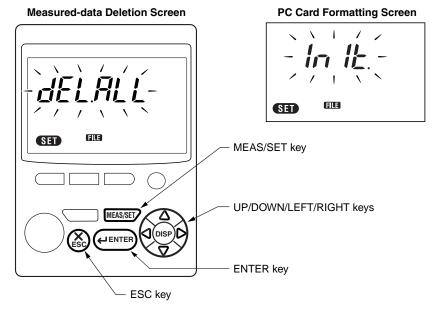
To cancel saving, press the 🛞 key. The screen in step (1) returns.

🖄 NOTE

- When the number of setting files residing in the inserted PC card has reached 30, you can no longer save the settings. Attempting to save settings causes *Errr I*, *J* to appear (this will disappear and the previous screen will return when any key is pressed). Delete an unnecessary file or files and try saving again.
- The loading cannot be performed when the electric energy count and the integration time are not zero. Attempting to load settings causes [rr] []]] to appear on the screen (this will disappear and the measurement screen will return when any key is pressed). Clear the electric energy count first. For details of how to do this, see Section 9.2.3, "Clearing Electric Energy Count," or Section 7.2.4, "Clearing Electric Energy Count and Resetting System," in this chapter.

TIP

- When the PC card is full, the **FULL** sign is displayed on the screen and the saving cannot be performed.
- Saving the settings when the communication device is set to a printer, prints the settings at the same time.


7.2.3 Deleting Measured-data Files and Formatting PC Card (FILE)

Description

Select *dELRLL* to delete all the measured data saved in the PC card. Select In IL to format the PC card.

Procedure

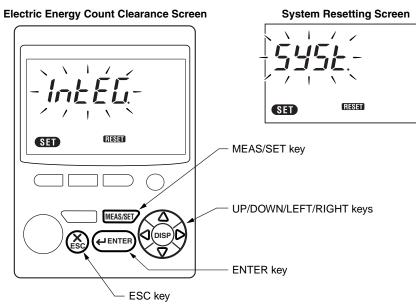
(1) Using the $\triangle \bigtriangledown \triangleleft \bigcirc$ keys in the setting item selection screen, make the **FILE** mark to appear on the screen. Then, press the *were* key. dELALL begins flashing.

- (2) Using the $\triangle \nabla \triangleleft \bigcirc$ keys, select dELRLL if you want to delete the measured data or In IL if you want to format the PC card.
- (3) Press the *extern* key. The selected action takes place and the setting item selection screen returns.

To cancel the data deletion or formatting, press the 🛞 key. The setting item selection screen also returns.

7.2.4 Clearing Electric Energy Count and Resetting System (RESE)

Description


Select InEEL to clear the electric energy count (watt-hours). Select 545E to reset the system.

Clearing the electric energy count means to reset all of the electric energy count, elapsed time of integration, and regenerative energy count to zeros.

Resetting the system means to perform the same actions as clearing the electric energy count and initialize the settings to the defaults, except for the date, time, and device number.

Procedure

(1) Using the $\triangle \bigtriangledown \triangleleft \bigcirc \land \bigcirc$ keys in the setting item selection screen, make the **RESET** mark to appear on the screen. Then, press the **WENTER** key. In LEL begins flashing.

- (2) Using the $\triangle \bigtriangledown \lhd \bigcirc$ keys, select *InEEL* if you want to clear the electric energy count or 545L if you want to reset the system.
- (3) Press the *entry* key. The selected action takes place and the setting item selection screen returns.

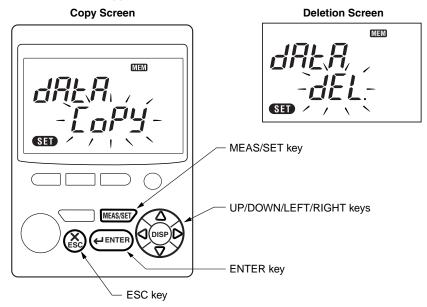
To cancel clearing the electric energy count or resetting the system, press the key. The setting item selection screen also returns.

🕭 NOTE

The electric energy count can also be cleared by simply pressing the 🛞 key for three seconds or more in the measurement screen. For this, see Section 9.2.3, "Clearing Electric Energy Count."

7.2.5 Copying and Clearing Backup Memory Contents (MEM)

Description


The CW120/121 have a memory for backing up the PC card. When the PC card becomes full or is removed, data is saved to the backup memory. For details, see Section 9.5, "Backup Memory."

When no data resides in the backup memory, namely, when the **MEM** mark is not displayed on the measurement screen, this setting item cannot be called.

Select $dALA \ L_{a}PJ$ to copy the data in the backup memory to the PC card. Select $dALA \ dEL$ to delete the data from the backup memory.

Procedure

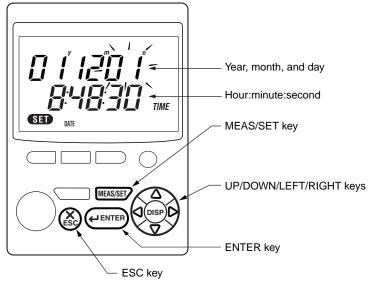
(1) Using the $\triangle \bigtriangledown \lhd \bigcirc$ keys in the setting item selection screen, make the **MEM** mark to appear on the screen. Then, press the **(HENTER)** key. *dRLR LoPY* appears and *LoPY* flashes.

- (2) Using the $\triangle \bigtriangledown \lhd \bigcirc$ keys, select $\mathcal{L} \mathfrak{aPY}$ if you want to copy the data in the backup memory to the PC card or $d\mathcal{E}\mathcal{L}$ if you want to delete the data from the backup memory.
- (3) Press the *entre* key. The selected action takes place and the setting item selection screen returns.

To cancel copying or deleting data, press the $\textcircled{\otimes}$ key. The setting item selection screen also returns.

7.2.6 Changing Date and Time (DATE)

Description


The CW120/121 have a clock, which is adjusted to the Japan standard time by default (factory setting). To change the date and time, follow the procedure below.

Procedure

 Using the △ ▽ < ▷ keys in the setting item selection screen, make the DATE mark and the current data and time settings appear on the screen. Then, press the enter key.

The day indication flashes.

Date and Time Change Screen

- (2) Using the < keys, select an item year, month, day, hour, minute, or second you want to change. The selected item flashes.</p>
- (3) Using the $\triangle \bigtriangledown$ keys, change the value of the selected item. When changing a number, pressing the $\triangle \bigtriangledown$ key continuously will make quick changes.
- (4) After making all necessary changes, press the *eterren* key. The date and time settings are changed and the setting item selection screen returns. To cancel the changes, press the key. The setting item selection screen also returns.

TIP

- For the year, set the last two digits. The range of the year setting is 00 to 99 (years 2000 to 2099).
- To make the changes effective, press the *event* key synchronously with a time signal from a TV broadcast or the like.

7

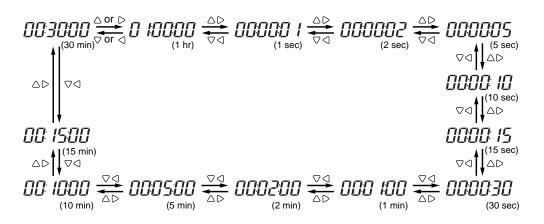
7.2.7 Setting Output Interval (INTER)

Description

When saving (outputting) data in the electric energy measurement mode, the interval of saving (outputting) data needs to be set. This output interval is set to 30 minutes by default and can be selected from:

- 1, 2, 5, 10, 15, and 30 seconds,
- 1, 2, 5, 10, 15, and 30 minutes, and

1 hour.


Procedure

 Using the △ ▽ < ▷ keys in the setting item selection screen, make the INTER mark and the current interval setting appear on the screen. Then, press the (→ ENTER) key. The current setting flashes.

Interval Interval MEAS/SET key UP/DOWN/LEFT/RIGHT keys ESC key ESC key

Output Interval Setting Screen

(2) Using the $\triangle \bigtriangledown \triangleleft \bigcirc$ keys, select the desired interval. The displayed interval time changes sequentially as follows.

(3) After selecting the desired interval, press the *entry* key. The interval is changed accordingly and the setting item selection screen returns. To cancel the change, press the *k* key. The setting item selection screen also returns.

When setting the output interval to 2 minutes or less, note the following.

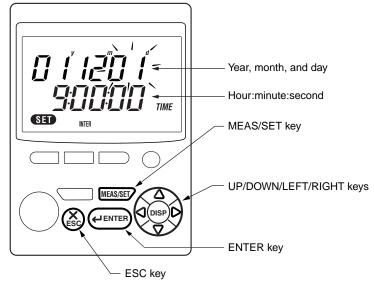
- Depending on the number of files residing in the PC card and the free space in it, the data at the beginning may not be saved (for example, after approximately fifty-thousand samples have been saved at one-second intervals). If this occurs, とアアピロー appears on the screen and data saving is stopped.
- Especially when setting the interval to 1 second, make sure that:
 - There is no file in the PC card (format the PC card to delete all files).
 - The PC card is inserted when starting the integration.
 - Do not remove the PC card during electric energy measurement.
 - Do not activate communication.
 - Do not perform excessive key actions.

Only if data saving to the PC card is enabled (see Section 7.2.10), data is saved to the PC card at the specified interval.

7.2.8 Setting Integration Start Date and Time (START)

Description

There are three ways to start integration:


- · Automatic starting at the specified time on the specified date
- Manual starting by pressing the (TART) key for one second or more
- · Remote starting by inputting a signal at the external control terminals

The following describes the start date and time setting for the first way.

Procedure

 Using the △ ▽ < ▷ keys in the setting item selection screen, make the START mark and the current settings of the start date and time appear on the screen. Then, press the exercise key. The day setting flashes.

Integration Start Date and Time Change Screen

- (2) Using the ▷ keys, select an item year, month, day, hour, minute, or second you want to change where the year, month, and day are shown with superscripts y, m, and d to avoid confusion. The selected item flashes.
- (3) Using the $riangleq \nabla$ keys, change the value of the selected item. When changing a number, pressing the $riangleq \nabla$ key continuously will make quick changes.

(4) After making all necessary changes, press the *exerce* key. The start date and time settings are changed and the setting item selection screen returns.

To cancel the changes, press the $\textcircled{\otimes}$ key. The setting item selection screen also returns.

🖄 NOTE

Set a valid date and time.

- If the start date and time are set to before the current time, or if the specified start date and time has passed before a start after setting, integration will start at the appropriate time determined by the output interval.
- If the start date and time are set to the same as the stop date and time or to later than the stop date and time, the stop date and time are automatically set to the point after the output interval from the start date and time.
- · Resetting the system changes the integration start date and time to the current time.

TIP

For the year, set the last two digits. The range of the year setting is 00 to 99 (years 2000 to 2099).

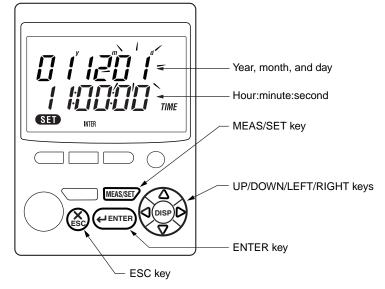
SEE ALSO

For details of the start and stop of integration, see Section 9.2, "Starting and Stopping Integration."

7.2.9 Setting Integration Stop Date and Time (\$TOP)

Description

There are three ways to stop integration:


- · Automatic stopping at the specified time on the specified date
- Manual stopping by pressing the (START) key for one second or more
- · Remote stopping by inputting a signal at the external control terminals

The following describes the stop date and time setting for the first way.

Procedure

Using the △ ▽ < ▷ keys in the setting item selection screen, make the \$TOP mark and the current settings of the stop date and time appear on the screen. Then, press the *exercise* key. The day setting flashes.

Integration Stop Date and Time Change Screen

- (2) Using the ▷ keys, select an item year, month, day, hour, minute, or second you want to change where the year, month, and day are shown with superscripts y, m, and d to avoid confusion. The selected item flashes.
- (3) Using the $riangleq \nabla$ keys, change the value of the selected item. When changing a number, pressing the $riangleq \nabla$ key continuously will make quick changes.
- (4) After making all necessary changes, press the *exerce* key. The stop date and time settings are changed and the setting item selection screen returns.

To cancel the changes, press the $\textcircled{\otimes}$ key. The setting item selection screen also returns.

Set a valid date and time.

- You cannot set the stop date and time to the same time or before the start date and time.
- Resetting the system changes the integration stop date and time to 30 minutes after the current time (since the output interval is initialized to the default, 30 minutes).

TIP

For the year, set the last two digits. The range of the year setting is 00 to 99 (years 2000 to 2099).

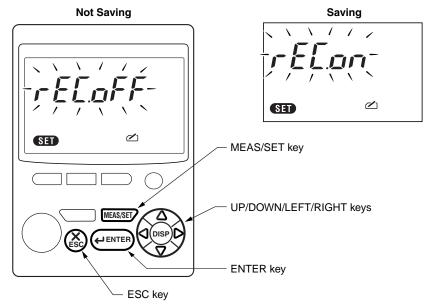
SEE ALSO

For details of the start and stop of integration, see Section 9.2, "Starting and Stopping Integration."

7.2.10 Enabling/Disabling Data Saving to PC Card (2)

Description

This determines whether to save the measured data during electric energy measurement to the PC card.


Select *r ELon* to enable (switch on) saving.

Select *r ELoFF* to disable (switch off) saving.

By default, the saving is enabled (switched on).

Procedure

The setting flashes.

- (2) Using the △ ▽ < ▷ keys, select r ELon if you want to enable saving or r ELoFF if you want to disable saving.
- (3) After making a change, press the entry key. The change is made effective and the setting item selection screen returns.
 To cancel the change, press the key. The setting item selection screen also returns.

🕭 NOTE

- When the saving is enabled (on), data is saved to the PC card in the output interval set (in Section 7.2 7).
- When the saving is enabled (on), the 🖄 mark is displayed also in the measurement screen.

7

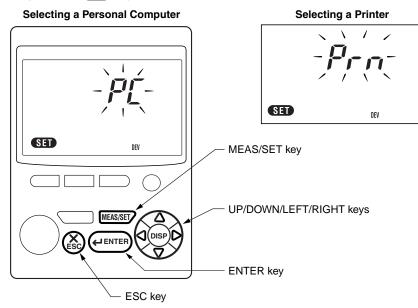
Making Settings

7.2.11 Selecting Communication Device (DEV)

Description

For RS-232 communication, you can select the device to connect to.

Select PL to connect to a personal computer.


Select P r n to connect to a printer.

By default, connection to a personal computer is selected.

For RS-485 communication, only connection to a personal computer is allowed, so this setting cannot be made.

Procedure

(1) Using the $\triangle \bigtriangledown \lhd \bigcirc$ keys in the setting item selection screen, make the **DEV** mark and the current device selection appear on the screen. Then, press the *(uterref)* key. The selection flashes.

- (2) Using the $\triangle \bigtriangledown \triangleleft \bigcirc$ keys, select PL if you want to connect to a personal computer or Prn if you want to connect to a printer.
- (3) After making a change, press the *effective* key. The change is made effective and the setting item selection screen returns.

To cancel the change, press the B key. The setting item selection screen also returns.

when a personal computer is selected, or when a printer is selected, flashes during access to the corresponding device.

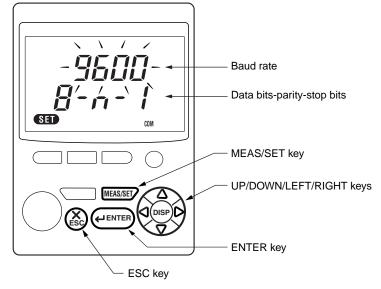
SEE ALSO

For the computer connection, see Chapter 11, "Communication Functions."

For the printer connection, see Section 12.2, "Using Optional Printer."

7.2.12 Making Communication Settings (COM)

Description


Follow the procedure below to set the baud rate, data bits, parity bit, and stop bits to match the specifications of the device to connect to.

- Baud rate: 1200, 2400, 4800, 9600,19200 or 38400 bps (9600 bps by default)
- Data bits: 7 or 8 (8 bits by default)
- Parity: n for no parity (default)
 - *E* for even parity
 - for odd parity
- Stop bits: 1 or 2 (1 bit by default)

Procedure

(1) Using the △ ▽ <> ▷ keys in the setting item selection screen, make the COM mark and the current communication settings appear on the screen. Then, press the ← ENTER key.
 The baud rate setting flashes.

Communication Setting Screen

(2) If necessary, change the baud rate using the $\triangle \bigtriangledown$ keys. The baud rate changes sequentially as follows.

- (3) Press the ▷ key to move to the data bit setting. The leftmost number in the lower row flashes. If necessary, change the data bit setting using the △ ▽ keys.
- (4) Press the ▷ key to move to the parity bit setting. The middle number in the lower row flashes. If necessary, change the parity bit setting using the △ ♡ keys.
- (5) Press the ▷ key to move to the stop bit setting. The rightmost number in the lower row flashes. If necessary, change the stop bit setting using the △ ▽ keys.
- (6) After making all necessary changes, press the *endowed* key. The settings are changed accordingly and the setting item selection screen returns. To cancel the changes, press the *key*. The setting item selection screen also returns.

TIP

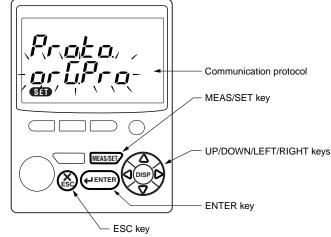
- You can move between the baud rate, data bit, parity bit, and stop bit settings from one to another in the reverse direction by using the <
- Resetting the system using a command via communication leaves the baud rate, data bit, parity bit, and stop bit settings unchanged.

7.2.13 Setting Communication Protocol (Prota) Description

CW120/121 can configure the following 6 communication protocols.

Communication Protocols

Communication Protoco	Explanation	
CW120/121-dedicated communication	orGPro	CW120/121-dedicated communication standard
Power monitor (PR201) communication	Pr201	Communication standard used for power monitor
PC link communication without sum check	PESoFF	Without error check
PC link communication with sum check	PE.Son	With error check
MODBUS communication (ASCII mode)	nodASE	Communication using ASCII data
MODBUS communication (RTC mode)	ñodrtU	Communication using Binary data


Default: CW120/121-dedicated communication

Procedure

Using the △ ▽ <> ▷ keys in the setting item selection screen, make the *Prota*. and the existing communication protocol setting appear on the screen. Then, press the *enter* key.

The communication protocol setting flashes.

Communication Protocol Setting Screen

(2) Using the $\triangle \bigtriangledown \lhd \circlearrowright$ keys, select the communication protocol. The displayed communication protocol changes sequentially as follows.

$$ar \ LPr a \xrightarrow{\diamond or \diamond}{\leftarrow \sigma d} Pr \ 20 \ I \xrightarrow{\diamond \diamond}{\leftarrow \sigma d} PL \ 5aFF \xrightarrow{\diamond \diamond}{\leftarrow \sigma d} PL \ 5an \xrightarrow{\diamond \diamond}{\leftarrow \sigma d} \ \overline{n} ad \ B5L \xrightarrow{\diamond \diamond}{\leftarrow \sigma d} \ \overline{n} ad \ r \ LU$$

(3) After selecting the communication protocol, press the *enter* key. The communication protocol is changed accordingly and the setting item selection screen returns.

To cancel the change, press the \bigotimes key, The setting item selection screen also returns.

SEE ALSO

For details of the communication function, see the CW120/121 CLAMP-ON POWER METERS Communication Functions user's manual (IM CW120C-E).

7.2.14 Setting VT Ratio (VT)

Description


When installing an external voltage transformer (VT) and inputting the secondary-circuit output of the VT to the CW120/121, setting the VT ratio appropriately will display the reading correctly in the scale of the primary circuit, namely, will perform scaling.

The VT ratio can be set from 1 to 10000 and is set to 1 by default.

When not using a VT, set the VT ratio to 1.

Whenever the VT ratio is set to a value other than 1, the [VT] mark is displayed even in the measurement mode.

Procedure

- (2) Using the < keys, select the digit to be changed. The selected digit flashes.</p>
- (3) Using the $riangle \nabla$ keys, change the number.
- (4) After making necessary changes, press the *event* key. The VT ratio setting is changed accordingly and the setting item selection screen returns.

To cancel the changes, press the $\textcircled{\otimes}$ key. The setting item selection screen also returns.

🖄 NOTE

- The VT ratio cannot be changed when the electric energy count or the elapsed time of integration is not zero. Attempting to change the ratio causes $[r_r,][]$ to appear on the screen (this will disappear and the measurement screen will return when any key is pressed). Clear the electric energy count first. For details of how to do this, see Section 9.2.3, "Clearing Electric Energy Count," or Section 7.2.4, "Clearing Electric Energy Count and Resetting System," in this chapter.
- A setting that causes the product of [VT ratio \times CT ratio \times rated power \times 1.3] to exceed 9999 GW is not allowed.

TIP

Example of VT ratio setting:

When using a 2200-to-110 V transformer, the transformer ratio is 20:1. So, set the VT ratio to 20. Displayed values:

Range of voltage reading: Voltage range $\times\,VT$ ratio

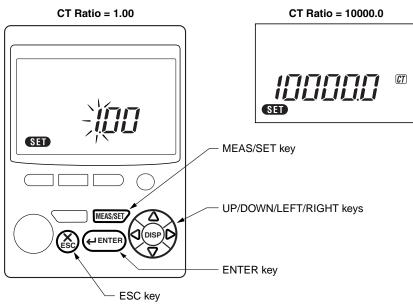
Range of current reading: Current range $\times\,\text{CT}$ ratio

Range of power reading: Rated power \times VT ratio \times CT ratio

7.2.15 Setting CT Ratio (CT)

Description

When installing an external current transformer (CT) and inputting the secondary-circuit output of the CT to the CW120/121, setting the CT ratio appropriately will display the reading correctly in the scale of the primary circuit, namely, will perform scaling.


The CT ratio can be set from 1.00 to 10000.0 and is set to 1.00 by default.

When not using a CT, set the CT ratio to 1.00.

Whenever the CT ratio is set to a value other than 1.00, the \fbox{T} mark is displayed even in the measurement mode.

Procedure

(1) Using the $\bigtriangleup \bigtriangledown \lhd \bigcirc \diamondsuit \lor \lor$ keys in the setting item selection screen, make the \fbox{II} mark and the existing CT ratio setting appear on the screen. Then, press the \fbox{III} key. The digit of the one place flashes.

- (2) Using the <□ ▷ keys, select the digit to be changed. The selected digit flashes.</p>
- (3) Using the riangle keys, change the number.
- (4) After making necessary changes, press the *event*er key. The CT ratio setting is changed accordingly and the setting item selection screen returns.

To cancel the changes, press the $\textcircled{\otimes}$ key. The setting item selection screen also returns.

🖄 NOTE

- The CT ratio cannot be changed when the electric energy count or the elapsed time of integration is not zero. Attempting to change the ratio causes $[r_r,][]$ to appear on the screen (this will disappear and the measurement screen will return when any key is pressed). Clear the electric energy count first. For details of how to do this, see Section 9.2.3, "Clearing Electric Energy Count," or Section 7.2.4, "Clearing Electric Energy Count and Resetting System," in this chapter.
- A setting that causes the product of [VT ratio \times CT ratio \times rated power \times 1.3] to exceed 9999 GW is not allowed.

TIP

Example of CT ratio setting:

When using a 100-to-5 A transformer, the transformer ratio is 20:1. So, set the CT ratio to 20. Displayed values:

Range of voltage reading: Voltage range $\times\,VT$ ratio

Range of current reading: Current range $\times\,\text{CT}$ ratio

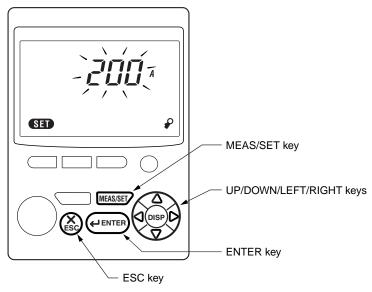
Range of power reading: Rated power \times VT ratio \times CT ratio

7.2.16 Selecting Clamp-on Current Probe to Be Used (

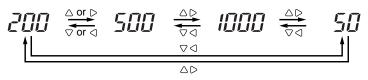
Description

The following four models of clamp-on current probes can be connected to the CW120/121.

Selectable Clamp-on Current Probes


Clamp-on Current Probe Model	Setting	Rating (Ranges)
96033	50 A	5/10/20/50 A
96030	200 A	2/50/100/200 A
96031	500 A	50/100/200/500 A
96032	1000 A	200/500/1000 A

Default: 200 A


Procedure

Using the △ ▽ < ▷ keys, make the ♀ mark (in the lower right) and its current setting appear on the screen. Then, press the <pre>evertien key. The number representing the currently selected clamp model flashes.

Selecting Clamp-on Current Probe to Be Used

(2) Using the △ ▽ < ○ keys, select the number corresponding to the desired clamp-on current probe. The number changes sequentially as follows.</p>

(3) After selecting the desired number, press the *event* key. The probe selection is changed accordingly and the setting item selection screen returns.

To cancel the change, press the $\textcircled{\sc s}$ key. The setting item selection screen also returns.

The clamp-on current probe selection cannot be changed when the electric energy count or the integration time is not zero. Attempting to change the selection causes $[\underline{r}, \underline{r}, \underline{J}]$ to appear on the screen (this will disappear and the measurement screen will return when any key is pressed). Clear the electric energy count first. For details of how to do this, see Section 9.2.3, "Clearing Electric Energy Count," or Section 7.2.4, "Clearing Electric Energy Count and Resetting System," in this chapter.

TIP

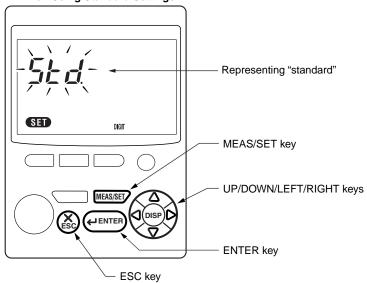
A maximum of three clamp-on current probes may be connected though it varies with the wiring method; probes having different ratings cannot be used at the same time. Namely, the clamp-on probes used at the same time must be of the same model.

7.2.17 Setting Decimal Point Position and Unit of Electric Energy (DIGIT)

Description

You can set the decimal point position and unit of the electric energy readings.

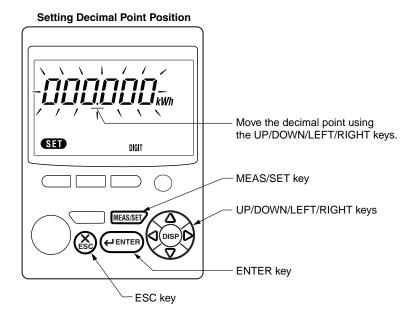
Select 54 d (default) when using the standard settings. Selecting the standard setting lets the CW120/121 power meter determine the decimal point position and unit based on the product of [rated power \times VT ratio \times CT ratio \times 1.3] as follows.


Rated Power × VT Ratio × CT Ratio × 1.3	Decimal Point Position and Unit
1 to 9.999 W	0.00 to 9999.99 Wh
10 to 99.99 W	0.0 to 99999.9 Wh
100 to 999.9 W	0.000 to 999.999 kWh
1 to 9.999 kW	0.00 to 9999.99 kWh
10 to 99.99 kW	0.0 to 99999.9 kWh
100 to 999.9 kW	0.000 to 999.999 MWh
1 to 9.999 MW	0.00 to 9999.99 MWh
10 to 99.99 MW	0.0 to 99999.9 MWh
100 to 999.9 MW	0.000 to 999.999 GWh
1 to 9.999 GW	0.00 to 9999.99 GWh
10 to 99.99 GW	0.0 to 99999.9 GWh
100 to 999.9 GW	0 to 999999 GWh

When specifying the desired decimal point position and unit, select:

- Decimal position setting from 000.000, 0000.00, 00000.0, and 000000.
- Unit from Wh, kWh, MWh, and GWh.

Procedure

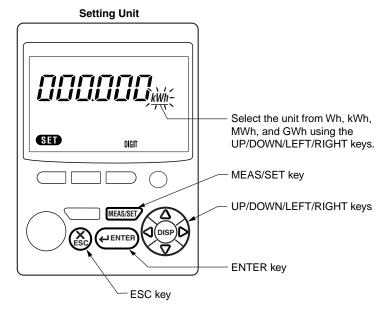

(1) Using the △ ▽ < ▷ keys, make the DIGIT mark and its current settings appear on the screen. Then, press the *exercise* key. *5k d* or the number representing the currently set decimal point position flashes.

When Setting Neither Decimal Point Position Nor Unit Specifically

- (1) Using the $\triangle \bigtriangledown \lhd \bigcirc$ keys, select 5*L* d.
- (2) Then, press the *extern* key. The settings are changed accordingly and the setting item selection screen returns.
 To cancel the change, press the key. The setting item selection screen also returns.

When Setting Decimal Point Position Specifically

- (2) Then, press the events key. The setting is changed accordingly and the unit setting begins flashing.


To cancel the change, press the $\textcircled{\otimes}$ key. The setting item selection screen also returns.

The decimal point moves sequentially by the $\bigtriangleup \bigtriangledown \lhd \bigcirc$ keys as shown below.

 $\begin{array}{c} 000000 \stackrel{\text{\tiny and}}{\underset{\text{\tiny bol}}{\overset{\text{\tiny and}}{\overset{\text{\tiny bol}}{\overset{\text{\tiny and}}{\overset{\text{\tiny and}}}{\overset{\text{\tiny and}}{\overset{\text{\tiny and}}}{\overset{\text{\tiny and}}{\overset{\text{\atop and}}{\overset{\text{\scriptstyle and}}{\overset{\text{\scriptstyle and}}{\overset{\text{\scriptstyle and}}}{\overset{\text{\scriptstyle and}}{\overset{\text{\scriptstyle and}}{\overset{\text{\scriptstyle and}}}{\overset{\text{\scriptstyle and}}{\overset{\text{\scriptstyle and}}}{\overset{\text{\scriptstyle and}}}{\overset{\text{\scriptstyle and}}}{\overset{\text{\scriptstyle and}}{\overset{\text{\scriptstyle and}}}{\overset{\text{\scriptstyle and}}}{\overset{\quad and}}}}}}}}}}}}}}}}}}}}}}}$

When Setting Unit Specifically

(1) After finishing changing the decimal point position setting, the unit setting starts flashing to allow you to change it.

- (2) Using the $\triangle \bigtriangledown \lhd \bigcirc$ keys, change the unit.
- (3) Then, press the errer key. The setting is changed accordingly and the setting item selection screen returns.
 To cancel the change, press the key. The setting item selection screen also returns.

7.3 Setting Name of Measured-data File

When saving the measured data in the electric energy measurement mode, you can set the name of the file to which measured data is to be saved.

File name = xxxxxxx.CSV Name (xxxxxxx): Eight or less characters Filename extension: Always CSV

Command: INTEgrate:STORe:FILEname Filename

When the file name is set, the set file name is displayed on the power meter's screen (called by pressing the (a) key) as shown below.

- Once the file name is set, it remains the same even though integration is repeatedly performed, namely, the measured data will be added to the same file.
- To reset the file name setting, reset the system or set the file name to "".
- If the file name is not set, it will be assigned automatically.

SEE ALSO

NOTE

For details of communication, see Chapter 11, "Communication Functions" and Chapter 12, "Communication Commands."

8.1 Measuring Instantaneous Values

The CW120/121 power meters have two modes for measurement:

- 1. **Instantaneous value measurement**: Measures the rms voltages and rms current of individual phases, and power, reactive power, power factor, and frequency.
- Electric energy measurement: In addition to the values in the instantaneous value measurement mode, measures the electric energy. Measurement is performed continuously and integration is started and stopped by using the (measurement) keys.

This section describes instantaneous value measurement.

Item	Unit	Displayed Name
Rms voltage	V	V1, V2, V3 (differs depending on the wiring method).
Rms current	A	A1, A2, A3 (differs depending on the wiring method).
Active power	w	W, W1, W2, W3 (differs depending on the wiring method).
Reactive power	Var	Var, Var1, Var2, Var3 (differs depending on the wiring method).
Power factor	—	PF, PF1, PF2, PF3
Frequency	Hz	Hz (input frequency of V1)
Active electric energy (watt-hours)	Wh	Wh, Wh1, Wh2, Wh3
Elapsed time of integration	Hour: minute:second Hour: minute Hour	00:00:00TIME 0000:00TIME 00000hTIME

Displayed Data

The display format changes over between the above automatically depending on the elapsed time.

Measurement Procedure

1. Perform safety checks

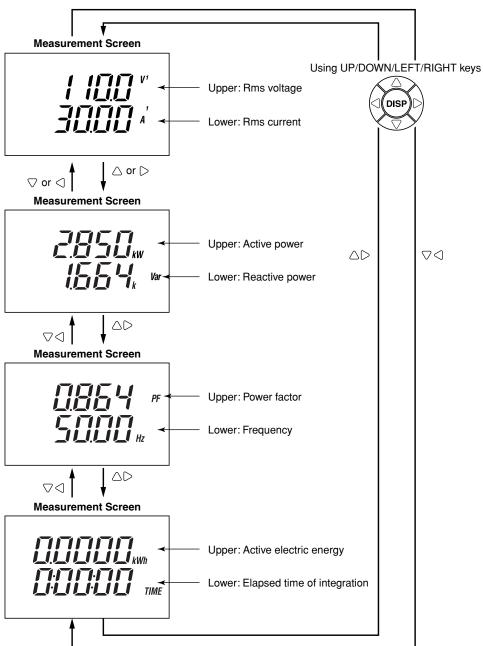
with reference to Chapter 3, "Precautions for Safe Measurement."

2. Turn on the power to CW120/121

with reference to Chapter 4, "Connecting Power Supply and Turning Power On/Off."

- 3. Perform wiring
 - with reference to Chapter 5, "Wiring."
- 4. Set the ranges and wiring method

with reference to Chapter 6, "Setting Ranges and Wiring Method."


5. Set measurement conditions

with reference to Chapter 7, "Making Settings."

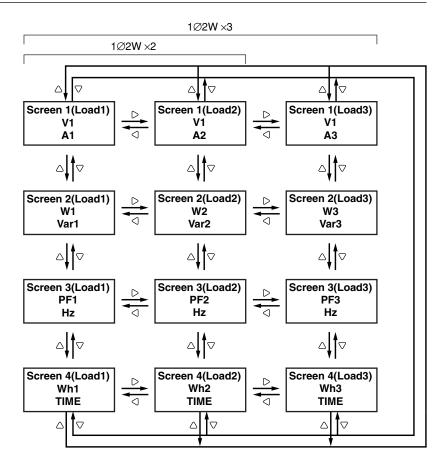
6. Measure instantaneous values.

8.2 Switching Display Contents

Pressing one of the UP/DOWN/LEFT/RIGHT keys changes the display contents in order. The sequence differs depending on the wiring method set. For example, the sequence when the single-phase two-wire method is chosen is shown below. Even for the unseen data items, the respective calculations are performed internally.

Sequence of Display Contents Switching for Single-phase Two Wires

• Differences in Display Contents Depending on Wiring Method


	Disalar	Displayed Item						
Phase Wires	Display Position	Screen 1	Screen 2	Screen 3	Screen 4	Screen 5	Screen 6	
Circle share two wires (1/2014)	Upper row	V1	W	PF	Wh			
Single-phase two wires (1Ø2W)	Lower row	A1	Var	Hz	TIME			
Single-phase three wires $(1\emptyset 3W)$	Upper row	V1	A1	W	PF	Wh		
Three-phase three wires (3Ø3W)	Lower row	V2	A2	Var	Hz	TIME		
Three-phase four wires (3Ø4W)	Upper row	V1	V3	A2	W	PF	Wh	
	Lower row	V2	A1	A3	Var	Hz	TIME	
	Upper row	V1	W1	PF1	Wh1	/		
Single-phase tow-wires ×2	Opper 10w		W2	PF2	Wh2			
(1Ø2W×2)	Lower row	A1	Var1	Hz	ТІМЕ			
	Lower low	A2	Var2	112				
			W1	PF1	Wh1	/	/	
	Upper row	V1	W2	PF2	Wh2			
Single-phase tow-wires ×3			WЗ	PF3	Wh3			
(1Ø2W ×3)		A1	Var1					
	Lower row	A2	Var2	Hz	TIME		/	
		A3	Var3			/	/	

Display contents differ depending on the wiring method as follows:

Name/Unit Appearing Next to Each Value

V1, V2, V3:	Input rms voltages
A1, A2, A3:	Input rms currents corresponding to CH1, CH2, and
	CH3, respectively
W, W1, W2, W3:	Active power (with minus sign in case of negative value)
Var, Var1, Var2, Var3:	Reactive power (with minus sign in case of negative value)
PF, PF1, PF2, PF3:	Power factor (with minus sign in case of negative value)
Hz:	Frequency
Wh, Wh1, Wh2, Wh3:	Active electric energy
TIME:	Elapsed time of integration

TIP

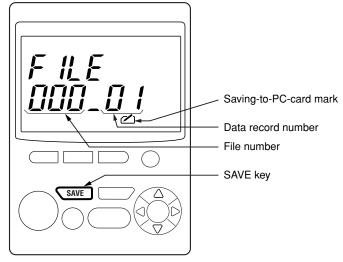
- The active electric energy and elapsed time of integration are displayed also during instantaneous value measurement.
- Polarities of Active Power, Reactive Power and Power Facter

		La	ag		Le	ad		
Phase difference	18	09	0	0	9	0	18	0
Active Power		-	+		+	-		
Reactive Power		+	+		-	-		
Power Factor		—	+		-	+		

8.3 Saving Data

There are two ways to save measured data to the PC card:

- 1. Manual, on-demand saving by pressing the SAVE key during instantaneous value measurement
- 2. Auto-saving at the preset output interval during electric energy measurement (continuous measurement)


This section describes the former way.

Procedure

Pressing the save key when the measurement screen is displayed during instantaneous value measurement causes a one-shot action of saving all the measured values. (This action is referred to as manual saving.)

(1) When the measurement screen is displayed, press the save key. The file number then appears on the screen and all the measured values are saved.

File Number Display upon Manual Saving

(2) Pressing the SAVE key again saves the measured values again with the data record number incremented but with the file number unchanged.

🖄 NOTE

- The file name will be given automatically.
- The file number is renewed in the following cases: (1) the data record number has exceeded 99; (2) the wiring method has changed; (3) the **RESET** or **FILE** actions have been carried out in the setting screen; (4) the PC card is removed or a PC card is inserted; and (5) the power is turned off once and then back on.
- Up to 30 files can be saved to a PC card (corresponding to file numbers from 000 to 029); attempting to save too many files causes *Err*, *I*[*I*] to appear. This will disappear and the measurement screen will return when any key is pressed. Delete an unnecessary file or files and try saving again.
- If there is something wrong with the inserted PC card, data cannot be saved and $[A_r d E_{rr}]$ appears. (The measurement screen will return when any key is pressed.)
- When the PC card becomes full, the **EULL** mark appears and data will not be saved.
- Saving the measured data when the communication device is set to a printer, causes the mark to flash and prints the data at the same time as the data saving.

File Name and Format

Measured data are saved to a CSV format file and the file name ("MWTH" followed by a number) is given automatically.

File name = MWTHxxx.CSV

Name (xxx): The smallest, unused number from 000 to 029 Filename extension: Always CSV

Example of Saved, Measured Data

Shown below is an example of a measured-data file (that was saved in a PC card) when opened from a spreadsheet application that has a CSV file converter. (The field configuration varies depending on the measurement conditions.)

CW12x												
File Type	2											
Measure Mode	1											
OUTPUT DATE	OUTPUT TIME	INTEG START DATE	INTEG START TIME	ELAPSED TIME	V1	11	Р	Q	PF	F	Wh(+)	Wh(–)
2001/11/11	10:10:00	0000/00/00	0:00:00	0:00:00								
2001/11/11	10:15:00	0000/00/00	0:00:00	0:00:00								
2001/11/11	10:21:00	0000/00/00	0:00:00	0:00:00								

Header (measurement conditions)

CW12x:	Indicates the model.
File Type:	"2" indicates a file containing instantaneous values
	measured.
Measure Mode:	"1" indicates electric energy measurement.

Fields of each data record

Date of output
Time of output
Integration start date
Integration start time
Elapsed time of integration

(The order of measured value fields below shows an example for the single-phase two-wire method.)

- V1: Rms voltage (value appearing with "V1" on meter screen)
- I1: Rms current (value appearing with "A1" on meter screen)
- P: Active power (value appearing with "W" on meter screen)
- **Q**: Reactive power (value appearing with "Var" on meter screen)
- **PF**: Power factor (value appearing with "PF" on meter screen)
- **F**: Frequency (value appearing with "Hz" on meter screen)
- Wh(+): Active electric energy (value appearing with "Wh" on meter screen)
- Wh(-): Regenerative electric energy (not appearing on meter screen)

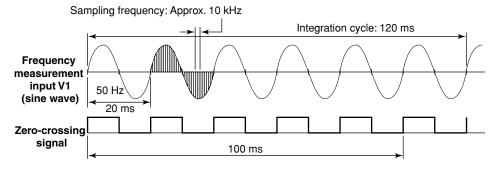
SEE ALSO

For details, see Appendix 3, "File Structures and Data Items Printed."

8.4 Frequency Measurement

The frequency of voltage input V1 is presented as the measured frequency. The frequency measurement is performed synchronously with the signal input.

When the V1 level is less than 10% of the rated voltage, the integration cycle is fixed to approximately 125 milliseconds.


Range of frequency measured: 45 to 65 Hz

Provision of Lowpass Filter

A lowpass filter with the cutoff frequency of 300 Hz is built into the frequency measurement circuit for eliminating noise from the input signal and assuring accurate frequency measurement.

8.5 Sampling Cycle and Integration Cycle

Synchronously with the zero crossing signal for the input voltage V1, the time period from when a cycle of zero-crossing begins until a cycle of zero crossing occurs immediately next after a specified period (100 milliseconds) has elapsed, is set to the integration cycle, and the rms voltage, rms current, and power are calculated.

	Examples		
	Frequency (Hz)	Integration Cycle (ms)	Number of Waves
-	50	120	6
-	60	116.67	7

Evomploo

9.1 Measuring Electric Energy

The CW120/121 power meters have two modes for measurement:

- 1. **Instantaneous value measurement**: Measures the rms voltages and rms current of individual phases, and power, reactive power, power factor, and frequency.
- Electric energy measurement: In addition to the values in the instantaneous value measurement mode, measures the electric energy. Measurement is performed continuously and integration is started and stopped by using the (MART) keys.

This section describes electric energy measurement.

Displayed Data

As the values measured and displayed, those related to active electric energy are added to the values during instantaneous value measurement.

Item	Unit	Displayed Name				
Rms voltage V		V1, V2, V3 (differs depending on the wiring method)				
Rms current	A A1, A2, A3 (differs depending on the wiring n	A1, A2, A3 (differs depending on the wiring method)				
Active power W Reactive power Var Power factor —		W, W1, W2, W3 (differs depending on the wiring method)				
		Var, Var1, Var2, Var3 (differs depending on the wiring method)				
		PF, PF1, PF2, PF3				
Frequency	Hz	Hz (input frequency of V1)				

During Instantaneous Value Measurement

During Electric Energy Measurement

Item	Unit	Displayed Name
Active electric energy	Wh	Wh, Wh1, Wh2, Wh3
Elapsed time of integration	Hour:minute:second Hour:minute Hour	00:00:00TIME 0000:00TIME 00000hTIME
		The display format changes over between the above automatically depending on the elapsed time.
(Regenerative electric energy)*	Wh	The values are not displayed on the screen, but only saved.

* Stands for the integrated, reversal power flow.

Measurement Procedure

- 1. Perform safety checks with reference to Chapter 3, "Precautions for Safe Measurement."
- 2. Turn on the power to CW120/121

with reference to Chapter 4, "Connecting Power Supply and Turning Power On/Off."

3. Perform wiring

with reference to Chapter 5, "Wiring."

4. Set the ranges and wiring method

with reference to Chapter 6, "Setting Ranges and Wiring Method."

5. Set measurement conditions

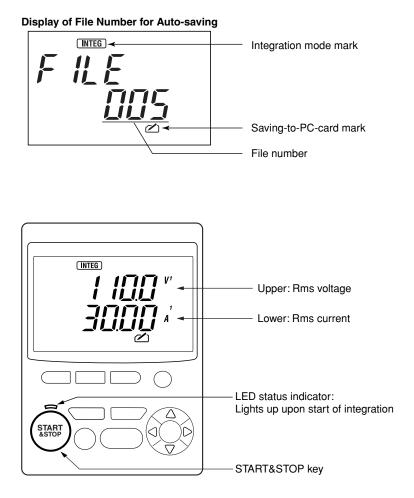
with reference to Chapter 7, "Making Settings."

- 6. Call the measurement screen with reference to Chapter 8, "Instantaneous Value Measurement."
- 7. Measure the electric energy (watt-hours).

🕭 ΝΟΤΕ

During integration (continuous measurement) or standby for integration, no settings can be modified but they can be viewed by pressing the MEASSET key for checking.

9.2 Starting and Stopping Integration

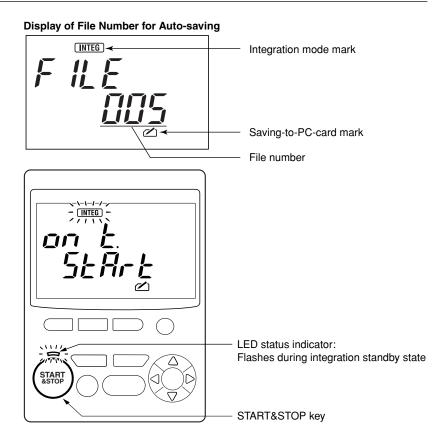

9.2.1 Starting Procedures

There are three ways to start integration:

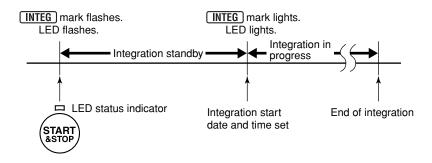
- Manual start: Pressing the (MAR) key for one second or more starts integration.
- Automatic start at the specified time on the specified date: Setting the start date and time via the setting screen and pressing the (FRF) key puts the meter into the integration standby state. After this, when the specified time is reached, integration begins.
- Remote start by external control signal: A signal input from the external control terminals starts integration. For details, see Section 9.6, "External Control Input/Output."

Manual Start

Press the we for one second or more. Then, the **INTEG** mark appears on the screen, the LED status indicator immediately above the we key lights up, and integration starts. If data saving to the PC card is enabled (see Section 7.2.10), the file number of the file to which the data is to be saved is displayed at the same time. After two seconds, the file number display disappears and the measurement screen returns.

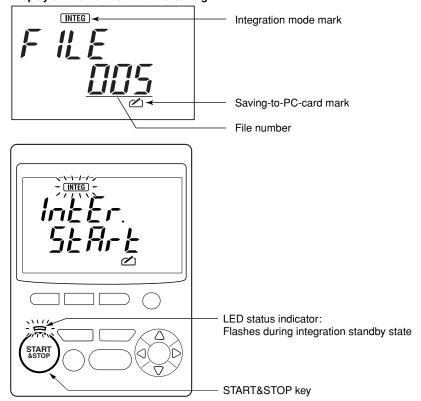


Automatic Start at Specified Time on Specified Date

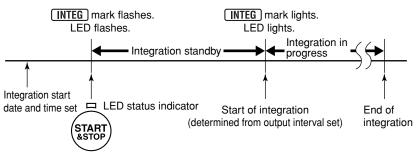

In this method, you set the integration start date and time via the setting screen. For the setting procedure, see "Measurement Procedure" in Section 9.1, "Measuring Electric Energy," and Section 7.2.8, "Setting Integration Start Date and Time."

If Start Date and Time Are Set to Future Point of Time (Later than Current Time)

Pressing the (m) key flashes the **INTEG** mark (on the screen) and LED status indicator. The file number of the file to which the data is to be saved is displayed for approximately two seconds (only if data saving to the PC card is enabled [see Section 7.2.10]), then the file number display disappears and on E.5ERrE appears, indicating that the power meter has entered the integration standby state.



When the specified time on the specified date has been reached, integration begins.


If Start Date and Time Are Set to Past Point of Time (Earlier than Current Time)

Pressing the key flashes the **INTEG** mark (on the screen) and LED status indicator. The file number of the file to which the data is to be saved is displayed for approximately two seconds (only if data saving to the PC card is enabled [see Section 7.2.10]), then the file number display disappears and $I_n E_r S E_n E$ appears, indicating that the power meter has entered the integration standby state.

Display of File Number for Auto-saving

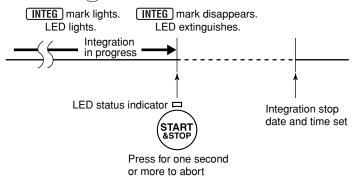
Integration will begin at an appropriate time determined from the output interval set.

TIP

- When setting the integration start date and time, consider the time period you need to finish all actions for setting the date and time and putting the meter into the integration standby state. (The start date and time may be passed before finishing the setting.)
- If the start date and time are set to later than (in the future) the stop date and time, the stop date and time will be changed to the time after the start date and time for the output interval.
- The manual saving action takes precedence over the automatic start setting. Upon pressing the matter key for one second or more to start saving manually, the start date and time settings become ineffective.
- To reset the integration standby state, press any key to return to the measurement screen, and then press the ()) key for one second or more. This will cause the (INTEG) mark to disappear and the LED status indicator to extinguish.

9.2.2 Stopping Procedures

There are three ways to stop integration:


- Manual stop: Pressing the (INF) key for one second or more stops integration. (Use this method to abort integration.)
- Automatic stop at the specified time on the specified date: When the specified time on the specified date set via the setting screen is reached, integration stops. (The stop date and time settings are effective only when integration has begun automatically at the start date and time set.)
- Remote stop by external control signal: A signal input from the external control terminals stops integration. For details, see Section 9.6, "External Control Input/Output."

Manual Stop

Press the (MR) key for one second or more. Then, the **INTEG** mark disappears from the screen, the LED status indicator immediately above the (MR) key extinguishes, and integration stops.

Aborting Integration

To abort integration before the set stop date and time have been reached, also press the (\overline{xxxy}) key for one second or more.

Automatic Stop at Specified Time on Specified Date

This is a method in which you set the integration stop date and time via the setting screen. The stop date and time settings are effective only when integration has begun automatically at the start date and time set. For the setting procedure, see "Measurement Procedure" in Section 9.1, "Measuring Electric Energy," and Section 7.2.9, "Setting Integration Stop Date and Time."

When the set stop time and date have been reached, the **INTEG** mark disappears from the screen, the LED status indicator immediately above the key extinguishes, integration stops, and the screen changes as shown below, indicating that integration has stopped.

Screen Showing End of Integration

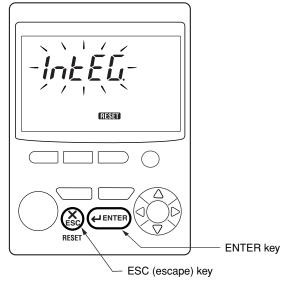
Pressing any key returns to the screen for instantaneous value measurement.

TIP

- Set the stop date and time such that the period from the start to the end of integration is not shorter than the output interval. Otherwise, only the data at the start and end times will be saved.
- Manually starting integration makes the stop date and time settings ineffective. You need to stop integration manually in this case.
- If the start date and time are set to later than (in the future) the stop date and time, the stop date and time will be changed to the time after the start date and time for the output interval.
- If the integration starts at a time after (in the future) the set stop date and time, the stop date and time settings become ineffective. You need to stop integration manually in this case, too.
- As the stop date and time, you cannot set a time earlier than (in the past) the start date and time.

9.2.3 Clearing Electric Energy Count

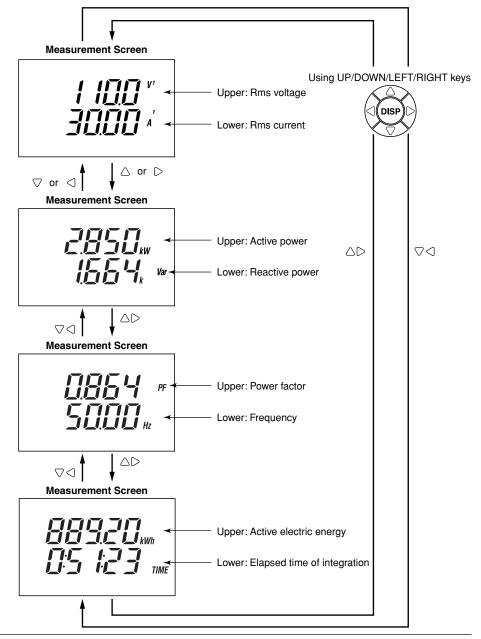
There are two ways to clear the electric energy count and elapsed time of integration:


- 1. In the measurement mode, press the \bigotimes key for three seconds or more.
- 2. In the setting mode, choose the setting item for clearing the electric energy count and resetting the system, and perform the specified setting actions.

This section describes the former way. For the latter way, see Section 7.2.4, "Clearing Electric Energy Count and Resetting System."

Procedure

(1) When the measurement screen is displayed, press the local (escape) key for three seconds or more. Then, the **RESET** mark appears and *InEL* flashes on the screen.

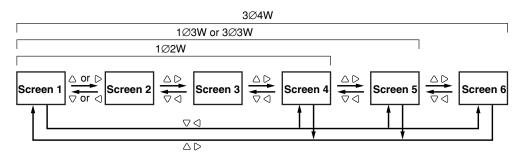

Electric Energy Count Clearance Screen

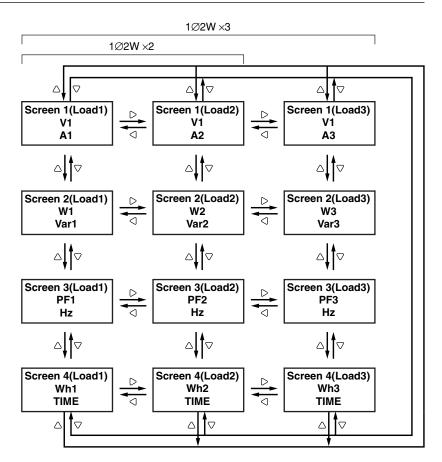
(2) Press the eleverst key. The electric energy count is cleared and the measurement screen returns. To cancel, press the key. The measurement screen also returns.

9.3 Switching Display Contents

In the same way as during instantaneous value measurement, pressing one of the $\triangle \bigtriangledown \lhd \bigcirc$ keys changes the display contents in order. The sequence differs depending on the wiring method set. For example, the sequence when the single-phase two-wire method is chosen is shown below. Even for the unseen data items, the respective calculations are performed internally.

Sequence of Display Contents Switching for Single-phase Two Wires


• Differences in Display Contents Depending on Wiring Method


Each time one of the $\triangle \bigtriangledown \triangleleft \bigcirc$ keys is pressed, the display contents change sequentially as follows:

	Disular	Displayed Item					
Phase Wires	Display Position	Screen			Screen		Screen
		1	2	3	4	5	6
Single-phase two wires $(1 \varnothing 2W)$	Upper row	V1	W	PF	Wh		
Single-phase two wires (102W)	Lower row	A1	Var	Hz	TIME		
Single-phase three wires $(1\emptyset 3W)$	Upper row	V1	A1	W	PF	Wh	
Three-phase three wires (3Ø3W)	Lower row	V2	A2	Var	Hz	TIME	
Three share four wires (0(34)4)	Upper row	V1	V3	A2	W	PF	Wh
Three-phase four wires (3Ø4W)	Lower row	V2	A1	A3	Var	Hz	TIME
	Upper row	V1	W1	PF1	Wh1	/	
Single-phase tow-wires ×2	opperiow	v i	W2	PF2	Wh2		
(1Ø2W ×2)	Lower row	A1	Var1	Hz	TIME		
	Lower low	A2	Var2	112			\bigvee
			W1	PF1	Wh1	/	
	Upper row	V1	W2	PF2	Wh2		
Single-phase tow-wires ×3			W3	PF3	Wh3		
(1Ø2W ×3)	[A1	Var1				
	Lower row	A2	Var2	Hz	TIME		
		A3	Var3			\vee	\bigvee

Name/Unit Appearing Next to Each Value

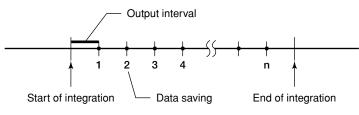
V1, V2, V3:	Input rms voltages
A1, A2, A3:	Input rms voltages corresponding to CH1, CH2, and
	CH3, respectively
W, W1, W2, W3:	Active power (with minus sign in case of negative value)
Var Vart Varo Varo	,
var, vari, varz, vars:	Reactive power (with minus sign in case of negative
	value)
PF, PF1, PF2, PF3:	Power factor (with minus sign in case of negative
	value)
Hz:	Frequency
Wh, Wh1, Wh2, Wh3:	Active electric energy
TIME:	Elapsed time of integration

9.4 Saving Data

There are two ways to save measured data to the PC card:

- 1. Manual, on-demand saving by pressing the SAVE key during instantaneous value measurement
- 2. Auto-saving at the preset output interval during electric energy measurement (continuous measurement)

This section describes the latter way.


Procedure

Make settings so as to enable data saving to the PC card (see Section 7.2.10), and the data will be saved automatically.

Conditions Required for Data Saving

Start of integration:	Activated at the set date and time.
End of integration:	Activated at the set date and time.
Output interval:	Selected from 1, 2, 5, 10, 15, and 30 seconds, 1, 2, 5, 10,
	15, and 30 minutes, and 1 hour.
Data saving to PC card:	Enabled (switched on).

For details of these settings, see Chapter 7, "Making Settings."

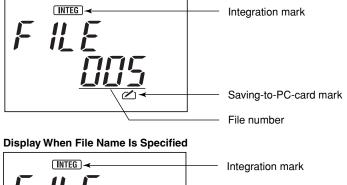
A NOTE

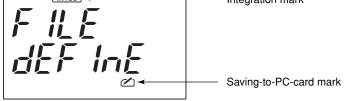
- Up to 30 files with automatically given names can be saved to a PC card (corresponding to file numbers from 000 to 029); attempting to save too many files causes *Err I*[*J*] to appear and the data will be saved to the backup memory. The error code will disappear and the measurement screen will return when any key is pressed.
- If a PC card is not inserted, $[R_r] c c r_r$ appears when integration begins and data will be saved to the backup memory. (The error code will disappear and the measurement screen will return when any key is pressed.)
- When the PC card becomes full, the **FULL** mark appears and data will be saved to the backup memory.

For details, see Section 7.2.5, "Copying and Clearing Backup Memory Contents," and Section 9.5, "Backup Memory."

File Name and Format

Data measured during electric energy measurement are saved to a CSV format file and the file name ("AWTH" followed by a number) is given automatically and can also be specified using a command via communication.


The file name can also be specified using a command via communication.


File name = AWTHxxx.CSV

Name (xxx): The smallest, unused number from 000 to 029 Filename extension: Always CSV

If data saving to the PC card is enabled, the file number of the file to which data is to be saved will be displayed on the screen when starting integration.

SEE ALSO

For details, see Section 7.3, "Setting Name of Measured-data File."

Example of Saved, Measured Data

Shown below is an example of a data file saved to a PC card when it is opened from a spreadsheet application that has a CSV file converter. (The field configuration varies depending on the measurement conditions.)

CW12x												
File Type	0											
Measure Mode	1											
OUTPUT DATE	OUTPUT TIME	INTEG START DATE	INTEG START TIME	ELAPSED TIME	V1	11	Ρ	Q	PF	F	Wh(+)	Wh(–)
2001/12/01	09:10:00	2001/12/01	09:00:00	0:10:00								
2001/12/01	09:20:00	2001/12/01	09:00:00	0:20:00								
2001/12/01	09:30:00	2001/12/01	09:00:00	0:30:00								

Header (measurement conditions)

cates the model.
ndicates a file containing values of integrated data
red automatically).
ndicates electric energy measurement.

Fields of each data record

OUTPUT DATE:	Date of output
OUTPUT TIME:	Time of output
INTEG START DATE:	Integration start date
INTEG START TIME:	Integration start time
ELAPSED TIME:	Elapsed time of integration

(The order of measured value fields below shows an example for the single-phase two-wire method.)

V1:	Rms voltage (value appearing with "V1" on meter screen)
l1:	Rms current (value appearing with "A1" on meter screen)
P:	Active power (value appearing with "W" on meter screen)
Q:	Reactive power (value appearing with "Var" on meter screen)
PF:	Power factor (value appearing with "PF" on meter screen)
F:	Frequency (value appearing with "Hz" on meter screen)
Wh(+) :	Active electric energy (value appearing with "Wh" on meter screen)
Wh(–) :	Regenerative electric energy (not appearing on meter screen)

SEE ALSO

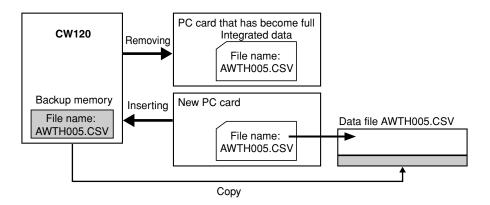
For details, see Appendix 3, "File Structures and Data Items Printed."

9.5 Backup Memory

The CW120/121 have a built-in memory for backing up the PC card and can be used for saving data up to 1500 times at 1ϕ 2W×2, 1000 times at 1ϕ 2W×3 or 3000 times at other type of connection. Data is saved to the backup memory in the following cases:

- When the PC card becomes full (the **FULL** mark appears).
- The PC card is removed during integration.

When data resides in the backup memory, the **MEM** mark is displayed. (The data stored in the backup memory is retained during power-off.)


The data in the backup memory is cleared whenever integration starts. Namely, starting integration when previous data is retained in the backup memory deletes it.

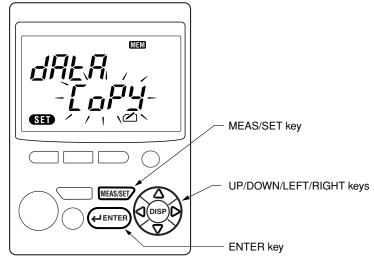
🖄 NOTE

When number of data save to the backup memory exceed each limit, <code>[rrd]]</code> appears and the saving action is aborted.

The data in the backup memory is processed as follows.

• When a PC Card Having Sufficient Free Space Is Inserted during Integration

• When a PC Card Having Sufficient Free Space Is Not Inserted during Integration


Data is continuously saved to the backup memory. If integration ends after the PC card has become full or when it is not inserted, you need to carry out either of the procedures below.

If Data Is Needed

Follow the procedure below to copy the data from the backup memory to a formatted, new PC card.

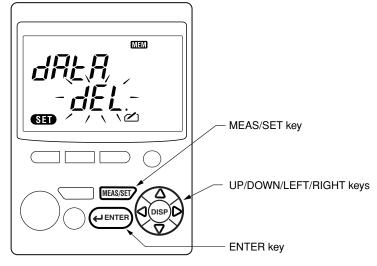
- (1) Insert a new, formatted PC card.
- (2) Press the MEAS/SET key to call the setting item selection screen.
- (3) Using the $\triangle \bigtriangledown \triangleleft \bigcirc$ keys, select **MEM** (make the **MEM** mark appear).
- (4) Press the (-1) key. $\int _{O} P$ then flashes on the screen.
- (5) Press the *example* key again. The data is then copied from the backup memory to the PC card with the same file name. The **MEM** mark will disappear, indicating that the copy has finished and data in the backup memory has been cleared.
- (6) Press the KANNET key to return to the measurement screen. Screen for Copying Data

Screen for Copying Data

SEE ALSO

Section 7.2.5, "Copying and Clearing Backup Memory Contents"

🖄 NOTE


If a file having the same file name resides in the PC card, the data is copied (added) to the bottom of that file.

If Data Is Not Needed

Follow the procedure below to clear the data in the backup memory.

- (1) Press the MEAS/SET/ key to call the setting item selection screen.
- (2) Using the $\triangle \bigtriangledown \lhd \bigcirc$ keys, select MEM (make the MEM mark appear).
- (3) Press the $(-1)^{\text{ENTER}}$ key. $\int _{\Omega} P^{J}$ then flashes on the screen.
- (4) Using the $\triangle \bigtriangledown \lhd \bigcirc$ keys, change [$_{\Box}PY$ to dEL.
- (5) Press the *even* key. The data is then cleared from the backup memory.
- (6) Press the MEASISET key to return to the measurement screen.

Screen for Clearing Data

SEE ALSO

Section 7.2.5, "Copying and Clearing Backup Memory Contents"

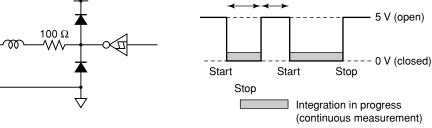
Starting the next integration will also clear the data in the backup memory.

9.6 External Control Input/Output

9.6.1 Remote Control

Integration (continuous measurement) can be started and stopped remotely. The external control input must be a 0/5 V (Low/High) level voltage signal or an open/close (short-circuit) contact. The external control output is a 0/5 V (Low/High) level voltage signal. Only the models with the RS-232 interface have external control input/output terminals.


Input


While the external control input signal is at the low level or is closed, integration (continuous measurement) is performed. While the external control input signal is at the high level or is open, instantaneous value measurement is performed.

Output

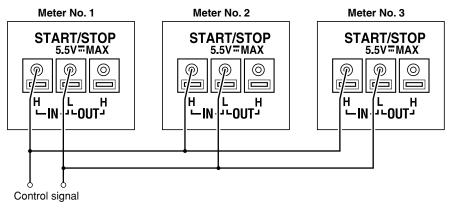
While integration (continuous measurement) is performed, the output is at the low level. While instantaneous value measurement is performed, the output is at the high level.

The **EXT** mark is displayed when integration is controlled by the external control signal.

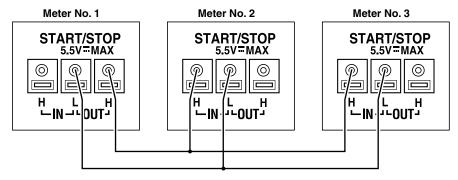
Remote integration start/stop control takes precedence over manual start/ stop and automatic start/stop at specified times. Remote control takes effect even during the integration standby state and when a setting screen is displayed. However, it is ineffective when integration has already begun and is on.

• Monitoring time:

A start-to-stop period must be at least 30 seconds long. Do not change the input signal within 30 seconds.

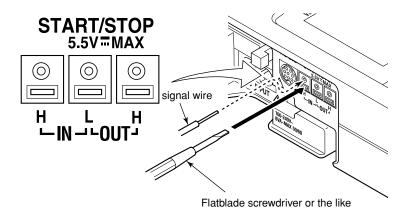

- Input levels
 Low: 0.0 to 0.8 V
 High: 2.0 to 5.0 V
- Allowable voltage:

The allowable voltage for the input terminals is -0.5 to 5.5 V.


9.6.2 Controlling Multiple CW120s and/or CW121s

When performing measurement with multiple CW120s and/or CW121s, you can synchronously start and stop integration in all the CW120s and CW121s by connecting external control terminals.

• Connecting a Control Signal in Parallel to Control All Meters Synchronously


• Controlling Meter Nos. 2 and 3 by Control Signal of Meter No. 1

9.6.3 Wiring for Terminals

• Wiring for External Control Input/Output Terminals

With a flatblade screwdriver or the like, push in the rectangular dip beneath each terminal hole and insert a peeled signal wire. Releasing the screwdriver grips the wire.

🖄 ΝΟΤΕ

- Do not apply a voltage exceeding the allowable voltage range (-0.5 to 5.5 V) to the control signal input terminal. The input circuit may be damaged.
- Do not confuse the input terminal with the output terminal.

• Applicable Wires for Signal Wiring

- Recommended wires:
 - Solid AWG 18 wires (1.0 mm diameter) or stranded 0.75 mm² wires
- Usable wires:

Solid AWG 26 to AWG 18 (0.4 to 1.0 mm diameter) wires Stranded AWG 22 to AWG 20 (0.3 to 0.75 mm² diameter) wires with each strand thicker than 0.18 mm diameter Standard peeling length: 10 mm

9.7 Meter Actions upon Power Failure and Recovery

The following describes the meter actions upon power failure and restoration concerning data saving. None of the following actions upon power failure and restoration takes place when a power failure has occurred during instantaneous measurement.

- After Power Failure Occurred during Integration Standby State
- If the power is restored before the preset integration start time:
 P_FR IL is displayed and the meter enters the integration standby state.
 Pressing any key returns to the measurement screen, and integration will start when the preset date and time is reached.
- If the power is restored after the preset integration start time:
 P_FR //_ is displayed and the meter starts integration immediately after the power has been restored. Pressing any key returns to the measurement screen.

Power Restoration Display

• If Power Failure Has Occurred during Integration

If data saving to the PC card is enabled (see Section 7.2.10), the active electric energy, regenerative energy, elapsed time of integration, and date and time of the power failure are saved. If a power failure has occurred during the saving action, it will be aborted and the data will be invalid. (This may result in destruction of the file.)

After the power restoration, the date and time of the restoration are saved, $P_{-}FR_{-}IL_{-}$ is displayed, and integration restarts in the same conditions as before the power failure. Pressing any key returns to the measurement screen.

Power Restoration Display

CW12x				
File Type	0			
Measure Mode	1			
OUTPUT DATE	OUTPUT TIME	INTEG START DATE	INTEG START TIME	ELAPSED TIME
2001/12/01	09:10:00	2001/12/01	09:00:00	0:10:00
POWER OFF	2001/12/01	09:15:00		

Example of Power Failure/Restoration Data

- **POWER OFF:** "2001/12/01" and "09:15:00" indicates that a power failure occurred at 09:15:00 on December 1, 2001.
- **POWER ON:** "2001/12/01" and "09:18:00" indicates that the power was restored at 09:18:00 on December 1, 2001.

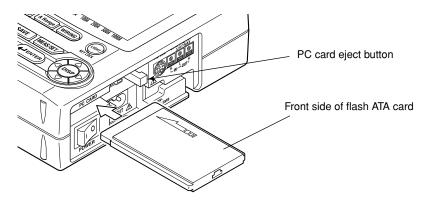
10.1 PC Card Specifications

The CW120/121 can save measured data and settings to a PC card as well as read saved settings from a PC card to apply them. The PC card interface of the CW120/121 complies with the following standards.

- PCMCIA
- Japan Electronic Industry Development Association (JEIDA)

Slots:	One Type II slot	
Card type:	Flash ATA	
Format:	MS-DOS	

• PC Card Models Whose Operations Have Been Verified


Compact flash card

Supplier	Model	Capacity
Western Digital	SSD-C25M-4400	256 MB
Technologies, Inc.	SSD-C51M-4400	512 MB
	SSD-C02G-4400	2 GB

10.2 Inserting and Removing PC Card

How to Insert a PC Card

To the PC card slot on the side of the CW120/121, insert a PC card with its front side up and in the direction of the arrow on top.

How to Remove a PC Card Depress the eject button next to the card slot.

The eject button may be one of two positions: depressed and popped-out. (The figure above shows the depressed position.)

Drawn position:	Depressing the button unlocks the card. Pull to remove the card.
Depressed position:	Depressing the button changes the position to the popped-out position. Depress the button again to unlock the card, and then pull to remove the card.

🕭 ΝΟΤΕ

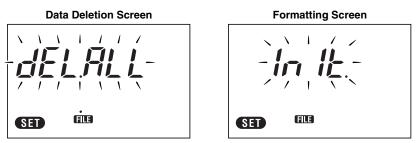
- Removing the PC card during access to it may destroy the saved files and damage the card itself. Before removing the card, ensure that:
 - Continuous measurement is not in progress.
 - Access to the card is not in progress (the Z mark is not flashing).
- For details of handling the card, see the documentation supplied with the card.
- When transporting the CW120/121, remove the PC card from the slot.

10.3 Storage Capacity

The time span of data that can be saved varies depending on the output interval. The table below shows the approximate time spans over which data can be saved to a PC card for a few cases where there is no other file residing in the card.

Wiring Method	Memory	Interval Time	Stored Period
3Ø4W	32MB	1 Second	Approx 40 Hours
3Ø4W	32MB	10 Minutes	Approx 4 Months

🖄 NOTE


To ensure that data can be saved, delete all files from the PC card other than measured-data files and setting files. Be careful that the total number of files in a card does not exceed 100.

10.4 Formatting PC Card

The CW120/121 can format a PC card in MS-DOS format. Format the card before using a newly purchased card, or to erase all files in the card.

Formatting a PC Card with CW120

- (1) Insert the PC card in the slot.
- (2) When the measurement screen is displayed, press the MEASURET/ key to call the setting item selection screen.
- (3) Select **FILE** (i.e., make the **FILE** mark appear).
- (4) Press the enter key. *dELALL* flashes on the screen.
- (5) Using the $\triangle \bigtriangledown \lhd \bigcirc$ keys, select *In IL*.

- (6) Press the *enter* key.
- (7) The mark flashes, indicating that access to the PC card is in progress. When the mark stops flashing and disappears, the formatting has finished.
- (8) To return to the measurement screen, press the MEAS/SET/ key.

SEE ALSO

For details of the respective settings, see Section 7.2.3, "Deleting Measured-data Files and Formatting PC Card," in Chapter 7, "Making Settings."

10.5 Saving and Loading from/to PC Card

• Saving Measured Data to PC Card

There are two ways to save measured data to a PC card:

- 1. Pressing the SAVE key during instantaneous value measurement
- 2. Auto-saving at a preset interval during electric energy measurement (continuous measurement)

Saving Data During Instantaneous Value Measurement

Press the SAVE key when the measurement screen is displayed, and a oneshot action of saving all the measured values will take place. (This action is referred to as manual saving.)

File name: MWTHxxx.CSV

Saving Data During Electric Energy Measurement

Set the output interval via the setting screen, and data will be saved at the output interval thus set. (This action is referred to as auto-saving.)

File name: <u>A</u>WTH<u>xxx</u>.CSV

Ensure that data saving to PC card is enabled (see Section 7.2.10) if you want to save data during electric energy measurement.

SEE ALSO

For details of the respective settings, see Chapter 7, "Making Settings."

For details of data saving during instantaneous value measurement, see Section 8.3, "Saving Data." For details of data saving during electric energy measurement, see Section 9.4, "Saving Data."

• Saving and Loading Settings

Saving Settings

Select **CONF** in the setting item selection screen, select $SR_{\mu}E$, specify the file number, and then perform saving.

File name: WTHxxx.SET

File number from 000 to 029

Loading Settings

Select **CONF** in the setting item selection screen, select $L_{\Box}A_{\Box}$, specify the file number of one of the setting files saved in the PC card, and then perform loading.

File name: WTHxxx.SET

SEE ALSO

For details of the respective settings, see Section 7.2.2, "Loading and Saving Settings," in Chapter 7, "Making Settings."

Copying Data from Backup Memory

When data is saved during electric energy measurement, if the PC card becomes full or if the card is removed, the measured data is saved to the backup memory. This data contained in the backup memory can be copied to a PC card.

SEE ALSO

For details of how to copy data from the backup memory, see Section 7.2.5, "Copying and Clearing Backup Memory Contents."

10.6 Interface with Personal Computer

Data saved in a PC card can be processed on a PC. You can process measured data using a spreadsheet application and so on by inserting a PC card containing measured data into the PC card slot of a PC. Even when a PC card is left inserted in a CW120 or CW121, the measured data in the PC card can be read from a PC and the setting data can be written from the PC via RS-232* or RS-485* communication. (Specify which of the interfaces you need, when ordering.)

SEE ALSO

- For details of communication, see Chapter 11, "Communication Functions," and Appendix 2, "Communication Commands."
- · For details of the format of saved files, see Appendix 3, "File Structures and Data Items Printed."
- Installation of parameter setting tool.
 (CD-ROM: TOOL BOX)

Refer to the "Appli_Install_Manual_E.pdf" file in "English" folder in CD-ROM.

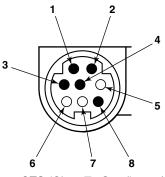
11.1 RS-232

The RS-232 interface allows the CW120/121 to be connected to a PC or printer.

RS-232 Interface Specifications

· · · · · · · · · · · · · ·	
Electromechanical specifications:	Compliant with EIA RS-232
Topology:	Point to point
Communication method:	Full duplex
Synchronization:	Asynchronous
Baud rate:	1200, 2400, 4800, 9600, 19200,
	38400 bps
Start bits:	Fixed to 1 bit
Data bits:	7 or 8 bits
Parity:	Odd, even, or none
Stop bits:	1 or 2 bits
Connector:	Miniature DIN, 8 pins
Hardware handshake:	Whether to set CA (RTS) and CB
	(CTS) to true or use them as control
	signals can be chosen.
Software handshake:	Transmission/reception control by X-
	on and X-off signals is possible.
Reception buffer length:	1024 bytes

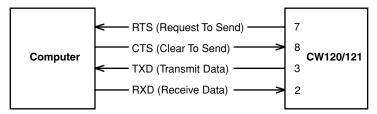
🖄 ΝΟΤΕ


The handshaking settings cannot be changed from the CW120/121. Modify the handshaking settings in a setting file and load the file to the CW120/121.

RS-232 Interface Connections

When connecting a CW120 or CW121 to a computer or printer via its RS-232 interface, you need to make interface settings such as handshaking methods, data transmission speed (baud rate), and data bit length to match those settings in the computer. For details of these settings, see the pages that follow.

As the interface cable, use one of the cables dedicated for the CW120/ 121: the 91011 (with D-sub 9-pin connector for a PC), 91009 (with D-sub 25-pin connector for a PC) or 91010 (for a printer).


Connector Pins and Assigned Signals

1.	CTS (Clear To Send):	Input handshaking signal from the computer
		used when transmitting data to the computer
2.	RXD (Receive $[rx]$ Data):	Input data from the computer
З.	RTS (Request To Send):	Output handshaking signal to the computer
		used when receiving data from the computer
4.	TXD (Transmit [tx] Data):	Output data to the computer
5-7		Unused
8.	GND (Signal Ground):	Signal ground

Directions of Individual Signals

The figure below shows the directions of the individual signals used in the RS-232 interface.

Correspondences of Signal Abbreviations between RS-232 Standard, CCITT Standard, and JIS (Japanese Industrial Standard)

Pin No.	Abb	Name			
(in 9 Pins)	RS-232	ССІТТ	JIS	Name	
5	AB (GND)	102	SG	Signal Ground	
3	BA (TXD)	103	SD	Transmit Data	
2	BB (RXD)	104	RD	Receive Data	
7	CA (RTS)	105	RS	Request To Send	
8	CB (CTS)	106	CS	Clear To Send	

Signal Names and Pin Assignment

• Allowable Combinations of Handshaking Methods

To assure data exchange via the RS-232 interface with a computer, both devices must follow a predetermined procedure (may be decided between both parties) by sending/receiving a series of electric signals. This series of exchanged signals is called a handshake. The handshake to be used may vary depending on the computer connected but must match the handshake performed by the computer. The following types of handshakes are possible with the CW120/121.

	Transmission Control (Control of Data Transmission to Computer)			Reception Control (Control of Data Reception to Computer)		
	Software Handshake	Hardware Handshake		Software Handshake	Hardware Handshake	inputor)
Handshaking Method	Quits Transmission upon Receipt of X-off; Restarts Transmission upon Receipt of X-on	Quits T ransmission When CB (CTS) Becomes False; Restarts Transmission When It Becomes True	No Handshake	Sends X-off When Data in Reception Buffer Has Reached 3 Quarters of the Capacity; Sends X-on When Data in Reception Buffer Has Decreased to a Quarter of the Capacity	Resets CA (RTS) to False When Data in Reception Buffer Has Reached 3 Quarters of the Capacity; Sets CA (RTS) to True When Data in Reception Buffer Has Decreased to a Quarter of the Capacity	No Handshake
OFF/OFF			0			0
XON/XON	0			0		
XON/RS	0				0	
CS/RS		0			0	

When Selecting OFF/OFF

Transmission Control

No handshake is performed between the CW120/121 and computer. The CW120/121 handles the X-off and X-on codes from the computer as data and ignores CTS (CS in JIS).

Reception Control

No handshake is performed between the CW120/121 and computer. After the reception buffer inside the CW120/121 becomes full, the overflowed data will be discarded. RTS (RS in JIS) is always true.

When Selecting XON/XON

Transmission Control

A software handshake is performed between the CW120/121 and computer. When the CW120/121 receives the X-off code from the computer while transmitting data, the CW120/121 quits the transmission. Then, when it receives the X-on code next, it restarts the transmission. The CW120/121 ignores CTS (CS in JIS) from the computer.

Reception Control

A software handshake is performed between the CW120/121 and computer. When the free space in the reception buffer decreases to 256 bytes, the CW120/121 transmits the X-off code to the computer. When the free space in the reception buffer increases to 768 bytes, the CW120/ 121 transmits the X-on code to the computer. RTS (RS in JIS) is always true.

When Selecting XON/RS

Transmission Control

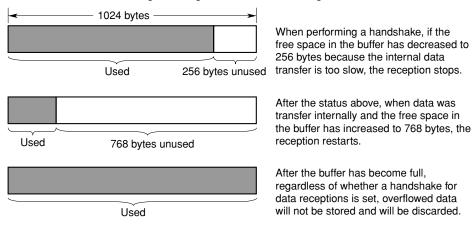
A software handshake is performed between the CW120/121 and computer. When the CW120/121 receives the X-off code from the computer while transmitting data, the CW120/121 quits the transmission. Then, when it receives the X-on code next, it restarts the transmission. The CW120/121 ignores CTS (CS in JIS) from the computer.

Reception Control

A software handshake is performed between the CW120/121 and computer. When the free space in the reception buffer decreases to 256 bytes, the CW120/121 resets RTS (RS in JIS) to false. When the free space in the reception buffer increases to 768 bytes, the CW120/121 sets RTS to true.

When Selecting CS/RS

Transmission Control


A software handshake is performed between the CW120/121 and computer. When the CW120/121 detects that CTS (CS in JIS) has become false while transmitting data, the CW120/121 quits the transmission. Then, when it detects that CTS has become true next, it restarts the transmission. The CW120/121 handles X-on/X-off codes sent from the computer as data.

Reception Control

A software handshake is performed between the CW120/121 and computer. When the free space in the reception buffer decreases to 256 bytes, the CW120/121 resets RTS (RS in JIS) to false. When the free space in the reception buffer increases to 768 bytes, the CW120/121 sets RTS to true.

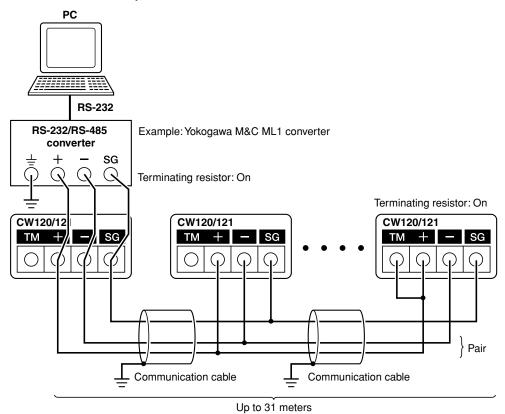
Precautions for Reception Control

While a CW120 or CW121 is controlling a data reception by a handshake, data may be sent from the computer even when the free space in the reception buffer is less than 256 bytes. In this case, regardless of whether a handshake for data reception is set, overflowed data will be discarded after the reception buffer becomes full. After free space appears in the reception buffer, data begins being stored to the buffer again.

TIP

When developing the computer's communication program, be careful about the data transmission rate so that the reception buffer either in the CW120/121 or in the computer will not become full.

11.2 RS-485


The RS-485 interface allows multiple CW120s and CW121s to be connected for remote monitoring.

RS-485 Interface Specifications

···· ···	
Electromechanical specifications:	Compliant with EIA RS-485
Topology:	Multidrop
Communication method:	Half duplex
Synchronization:	Asynchronous
Baud rate:	1200, 2400, 4800, 9600, 19200,
	38400 bps
Start bits:	Fixed to 1 bit
Data bits:	7 or 8 bits
Parity:	Odd, even, or none
Stop bits:	1 or 2 bits
Connector:	4 screw terminals (M3)
Hardware handshake:	Not available
Software handshake:	Not available
Error detection:	2-byte simple summation checksum
Reception buffer length:	1024 bytes
Maximum transmission distance:	1.2 km (when using shielded cable
	containing 2 twisted pairs of AWG 24
	conductors)
Terminating resistor:	Approx. 120 Ω built-in

• RS-485 Interface Connections

See the figure below for the wiring of RS-485 cables (in two-wire method) to connect to a personal computer. When using the RS-232 port of the PC, you need an RS-232/RS-485 converter.

- +: SD +(send data) / RD +(receive data)
- -: SD -(send data) / RD -(receive data)
- TM: Terminating resistor (short-circuiting with the + terminal switches on the terminating resistor).
- SG: Signal ground

Device Address

A device address needs to be assigned to each device on an RS-485 network. The device number set in each CW120/121 is identified as the device address.

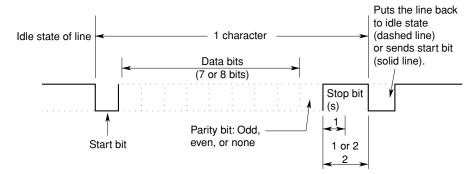
SEE ALSO

For device address setting, see Section 7.2.1, "Setting Device Number," in Chapter 7, "Making Settings."

🖄 NOTE

The device number must be unique within the same system for correct communication.

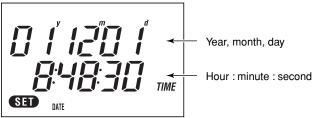
Cable Used


Use shielded cables containing 2 twisted pairs of AWG 24 conductors.

Turn off the power when performing wiring for the terminals to avoid electric shock.

11.3 Data Format

The serial interface of the CW120/121 performs asynchronous transmission. In an asynchronous transmission, each character is carried in such a way that 7 or 8 data bits are preceded by a start bit and followed by a parity bit (optional), and 1 or 2 stop bits in order (see also the figure below).



12.1 Convenient Functions

Clock

The CW120/121 have a built-in clock, which is adjusted to the Japan standard time by default (factory setting). The date and time display formats are $YY^{y}MM^{m}DD^{d}$ (YY is the last two digits of the year) and hh:mm:ss, as shown below. The accuracy of the clock is ±100 ppm (typical).

Date and Time Setting Display

To change the date and time, use the setting screen.

SEE ALSO

For clock adjustment, see Section 7.2.6, "Changing Date and Time," in Chapter 7, "Making Settings."

Backlight for LCD

You can turn on and off the backlight for the LCD by pressing the (16HT) key. When no key actions have been performed for 10 minutes or longer, the backlight is turned off automatically.

Key Lock

Pressing the (1000) key for three seconds or more locks the keys and causes the \checkmark (key lock) mark to appear on the screen.

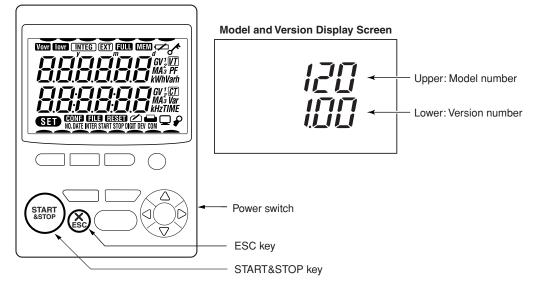
To unlock, press the (IGHT) key for three seconds or more. The keys are unlocked and the $A^{(Key lock)}$ mark disappears from the screen.

TIP

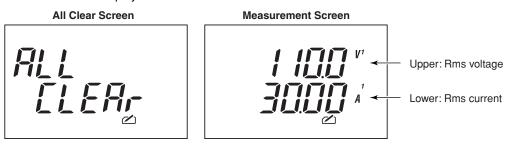
Only the (user) key is usable during the key lock state.

• Clearance of All Settings and Data

Keep pressing the () and () keys and turn on the power switch, then all settings* will be initialized to the defaults, and the active electric energy, regenerative energy, elapsed time of integration, and data in the backup memory will be cleared.


* Except the date, time, and device number

Procedure


Hold down the (M) and (K) keys and turn on the power switch. Keep pressing the (M) and (K) keys until the model number appears on the screen.

Meter Actions

All LCD segments light up, and then the model number and version appear.

ALL CLEAr appears on the screen, and then the measurement screen is displayed.

12.2 Using Optional Printer

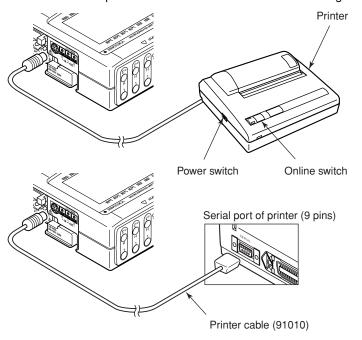
🖄 NOTE

The printer (97010) has been discontinued from 2013.

Connecting an optional printer allows you to print measured data and settings. The printer can be connected only to a model with the RS-232 interface.

• Printer Specification

Model: Yokogawa M&C 97010 (Seiko Instruments DPU-414 printer)


Specifications:

Printing method:	Thermal serial dot printing
Number of columns to print:	80
Character presentation:	9x7 dots
Print speed:	52.5 mm/s
Paper width:	112 mm

Connection

Use the RS-232 port. Printer cable: Model 91010

Turn off the power to the printer. (The power lamp turns off.)
 Connect the printer to the CW120/121 as shown in the figure below.

• Checking Printer Settings

- 1. Keep pressing the Online switch of the printer and turn on the power. Then, the printer settings are printed in English.
- 2. Check that the initial settings, as shown in parentheses inside the tables below, are left.

Printer Initial Settings (DIP Switch Settings)

DIP SW-1

Setti	ing	Item	ON	OFF
1 (0	OFF)	Input type	Parallel	Serial
2 (0	ON)	Printing speed	High	Low
3 (0	ON)	Auto-loading	Enable	Disable
4 (0	OFF)	CR or CR/LF	CR/LF	CR
5 (0	ON)	Setting command	Enable	Disable
6 (0	ר(OFF			
7 (0	ON) -	Printing density = 100%		
8 (0	ON) ⊥			

DIP SW-2

Se	etting	Item	ON	OFF
1	(OFF)	Print mode	40 columns	80 columns
2	(ON)	Backup of user-defined characters	Enable	Disable
3	(ON)	Character type	Normal	Special
4	(ON)	Character of zero	0	Ø
5	(ON)			
6	(ON)	 Encoding character set = Japanese 		
7	(ON)		apanese	
8	(ON)			

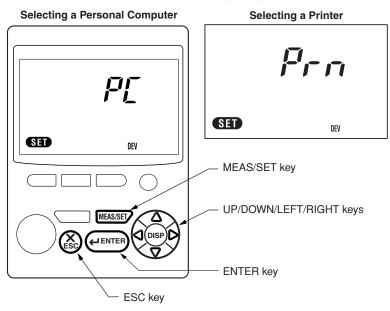
DIP SW-3

Setting	Item	ON	OFF
1 (ON)	Data bits	8 bits	7 bits
2 (ON)	Parity (use/not use)	Not use	Use
3 (ON)	Parity (even/odd)	Odd	Even
4 (OFF)	Flow control	H/W BUSY	XON/XOFF
5 (OFF)			
6 (ON)	- Baud rate = 9600 bps		
7 (ON)	Daud Tale - 5000 bp3		
8 (ON) ┘			

3. Turn off the power to the printer.

TIP

- For details of how to change the printer settings, see the documentation supplied with the printer.
- If the characters printed with the print mode selection in DIP SW-2 set to 80 columns (OFF) are too small to read, change the setting to 40 columns (ON).


• Setting in CW120/121

When using a printer, a setting needs to be made also in the CW120/121.

Procedure

With reference to Section 7.2.11, "Selecting Communication Device," in Chapter 7, "Making Settings," select a printer as the communication device.

Either a printer or personal computer can be connected via the RS-232 interface; select a printer when connecting to a printer.

The imark flashes on the screen during access to the printer.

Example of Printout

For instantaneous value measurement with 1(2W wiring method

	2001/12/01	11:00:00	→ Time of output
	Integration 2001/12/01 Elapsed time (V1	10:00:00	Lintegration start time Elapsed time of integration
Instantaneous values	I1 P Q PF	: 30.00 : 2.850 : 1.664 : 0.860	A kW kVar
Electric	<pre> F F +Wh -Wh </pre>	: 50.00 : 889.20 : 0.00	Hz KWh KWh
		PF: Power factor F: Frequency	

SEE ALSO

For print data, see Appendix 3, "File Structures and Data Items Printed."

TIP

The printout above is an example when the print mode is set to 40 columns (ON) in DIP SW-2. See the DIP switch settings described on the page before the previous one.

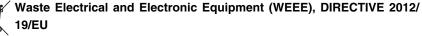
13.1 Corrective Measures in Case of Failure

This section describes corrective measures in case a failure occurs with the CW120 or CW121.

If the meter does not operate properly after taking the corrective measures shown in the table below or any other failure that is not covered in this section occurs, contact the vendor from which you purchased the instrument.

Problem	Things to Check
1. The meter cannot be turned on.	 Check that the power cord is firmly plugged into the power outlet. Check that you are not using power outside the allowable power supply voltage. If neither of the above applies, the built-in fuse may have blown. Users are not authorized to replace a built-in fuse by themselves. Contact the vendor from which you purchased the instrument.
2. The settings are initialized when the power is turned on.	If any one of the following error codes appears during the self-test after a power-on, the backup battery may have run flat. Err.005, Err.007 Err.009, Err.010 Users are not authorized to replace the backup battery by themselves. Contact the vendor from which you purchased the instrument. The life of the backup battery is about 10 years.
 Measurement values are erroneous. 	 May be affected by noise. Check the installation environment. Check that the measuring probes and the clamps are connected correctly. Check that the ambient temperature and humidity are within the allowable ranges.
4. No key action is possible.	 Check that the A (key lock) mark is not displayed on the screen. Some settings such as ranges can be changed only when the electric energy values and elapsed time of integration are zeros. Clear the integrated values.
5. Data cannot be saved to the backup memory.	 Turn the power off and back on again. In some cases, the initial self-test may correct the problem. A power failure might have occurred when the memory was being accessed. Clear the backup memory contents via the setting screen. Note that this loses data saved in the backup memory.
6. The meter cannot be controlled through the serial interface.	 Check that the communication parameters are set correctly for both the computer and meter. Check that the correct type of cable is used for the intended application.
7. An error code appears during the self-test.	• There is an error in the hardware. Contact the vendor from which you purchased the instrument.

If an error code is displayed, refer to Section 13.2, "Error Codes."


13.2 Error Codes

Error Code	Description
Err.00 I	Error in SRAM with battery backup
Err.002	EEPROM has been initialized.
Err.003	Checksum error of EEPROM
Err <u>0</u> 04	Illegal data in EEPROM
Err.005	Failure in writing to EEPROM
Err.006	RTC has been initialized.
Err.007	Error in RTC
Err.008	Error in PC card controller
Err <u>0</u> 09	Settings have been initialized.
Err <u>0</u> 10	Illegal settings
Err. 101	Failure in writing to PC card
Err. 102	Failure in reading from PC card
Err. 103	Maximum number files in PC card exceeded
Err. 104	A PC card other than a flash ATA card is inserted.
Err. 105	PC card not yet formatted
Err. 106	A PC card not supported is inserted.
Err. 107	Failure in deleting a measured-value file
Err. 108	Failure in saving the setting file
Err. 109	Failure in loading the setting file
Err.112	PC card-related error other than above
Err.200	Data in internal memory exceeds the capacity.
Err.201	Failure in saving measured data within output interval
Err.300	The electric energy value or elapsed time of integration is not zero. No change to setting allowed.
SELErr	The product of [rated power \times VT ratio \times CT ratio \times 1.3] exceeds 9999 GW.

To return to the measurement screen from the error display, press any key.

13.3 Sales in Each Country or Region

13.3.1 Disposing the Product

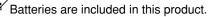
(This directive is valid only in the EU.)

This product complies with the WEEE Directive (2012/19/EU) marking requirement.

This marking indicates that you must not discard this electrical/electronic product in domestic household waste.

Product Category

With reference to the equipment types in the WEEE directive Annex I,


this product is classified as a "Monitoring and Control instruments" product. Do not dispose in domestic household waste.

When disposing products in the EU, contact your local Yokogawa Europe B. V. office.

13.3.2 How to replace the batteries

New EU Battery Directive, DIRECTIVE 2006/66/EC

(This directive is valid only in the EU.)

You cannot replace batteries by yourself.

When you need to replace batteries, contact your local Yokogawa Europe B.V. office.

Battery type: Lithium cell

Notice:

This marking indicates they shall be sorted out and collected as ordained in Annex II in DIRECTIVE 2006/66/EC.

13.3.3 Authorized representative in the EEA

"Yokogawa Europe BV. is the Authorized Representative of Yokogawa Meters & Instruments Corporation for this Product in the EEA." (EEA: European Economic Area)

To contact Yokogawa Europe BV., see the separate list of worldwide contacts, PIM 113-01Z2.

13.3.4 "Measures for Administration of the Pollution Control of Electronic Information Products" of the People's Republic of China

This section explains the Prevention of Pollution Control of Electronic Equipment Method in China. This manual is valid in China only .

	有毒有害物质或元素					
部件名称	铅 (Pb)	汞 (Hg)	镉 (Cd)	六价铬 (Cr (VI))	多溴联苯 (PBB)	多溴二苯醚 (PBDE)
框架(塑料)	×	×	×	×	0	0
线路板 ASSY	×	×	×	×	0	0
AC 导线	×	×	×	×	0	0
电压探头	×	×	×	×	0	0
选购						
电流探头 (夹子)	×	×	×	×	0	0
○:表示该部件	〇:表示该部件的所有均质材料中的有毒有害物质的含量均在 SJ/T11363-2006 标准中所规定的限量以下。					
x:表示该部件中	x:表示该部件中至少有一种均质材料中的有毒有害物质或元素的含量超过 SJ/T11363-2006 标准所规定的限					
量要求。						
<选购>						
电流探头(夹	电流探头 (夹子): 96030, 96031, 96032, 96033, 96034, 96035, 96036					
	×	×	×	×	0	Ó

环保使用期限:

该标识适用于 2006 年 2 月 28 日颁布的《电子信息产品污染控制管理办法》以及 SJ /T11364 - 2006《电子信息产品污染控制标识要求》中所述,在中华人民共和国销 售的电子信息产品的环保使用期限。

只要您遵守该产品相关的安全及使用注意事项,在自制造日起算的年限内,则不会因 产品中有害物质泄漏或突发变异,而造成对环境的污染或对人体及财产产生恶劣影响。 注)该年数为"环保使用期限",并非产品的质量保证期。零件更换的推荐周期,请 参照使用说明书。

14.1 Specifications of CW120/121

(1) Inputs

Item		Voltage Inputs	Current Inputs
Input type		Resistive potential division	Clamp sensing
Ratings (ranges)		150, 300, 450 V	96033 clamp-on probe: 5, 10, 20, 50 A 96030 clamp-on probe: 20, 50, 100, 200 A 96031 clamp-on probe: 50, 100, 200, 500 A 96032 clamp-on probe: 200, 500, 1000 A
	CW120	Single-phase two wires, single-phase three wires, three-phase three wires, single-phase tow-wires ×2	
Phase lines CW121		Single-phase two wires, single-phase three wires, three-phase three wires, three-phase four wires, single-phase tow-wires $\times 2$, single-phase tow-wires $\times 2$	
Input	CW120	Approximately 1.5 M Ω	Approximately 100 kg
resistance	CW121	Approximately 1.3 M Ω	Approximately 100 k Ω
Maximum allowed continuous input		495 Vrms	96033 clamp-on probe: 130 Arms 96030 clamp-on probe: 250 Arms 96031 clamp-on probe: 625 Arms 96032 clamp-on probe: 1000 Arms
A/D conversion Simul		Simultaneous voltage/current input conversion, 12-bit resolution	

(2) Measurement Functions

Item		Voltage	Current/Active Power	
Method		Digital sampling		
Frequency ran	ge	45 to 65 Hz (reciprocal method), detected	from V1 input	
Crest factor		150 or 300 V range: 2 for rated input	3 for rated input	
Orest lactor		450 V range: 1.56 for rated input		
Effective input range		10% to 110% of each rated range		
	Lower limit	1.5 V for all rated ranges	0.4% of each range	
Display range Upper limit		130% of each rated range for all ranges other than 450 V 110% of rated range for 450-V range	130% of each rated range	
Temperature coefficient		±0.05% of rng (range)/°C	±0.07% of rng (range)/°C (including clamp-on probe)	
Display update period		Approximately 1 second		

(3) Instantaneous Value Measurement

,	
Measured parameters	Rms voltage (V), rms current (A), active power
	(W), frequency (Hz)
Measurement accuracy	At power factor = 1 (including clamp-on probes)
Voltage	±(0.3% rdg + 0.2% rng)
Current and activ	e power
	\pm (0.8% rdg + 0.4% rng) with probe 96030, 96031,
	or 96033
	\pm (1.2% rdg + 0.8% rng) with probe 96032
Frequency	±(0.1% rdg + 1 dgt)
Calculated parameters	Reactive power (Var), power factor
Calculation accuracy	(Value calculated from measurement) \pm 1 dgt
Power factor effects	$\pm 1.0\%$ rng $\cos\phi = \pm 0.5$ (relative to power factor 1)
	with probe 96030
	$\pm 2.0\%$ rng $\cos\phi = \pm 0.5$ (relative to power factor 1)
	with probe 96031, 96032, or 96033
Reactive factor effects	$\pm 1.0\%$ rng sin $\phi = \pm 0.5$ (relative to reactive factor 1)
	with probe 96030
	$\pm 2.0\%$ rng sin $\phi = \pm 0.5$ (relative to reactive factor 1)
	with probe 96031, 96032, or 96033

(4) Equations

Rms voltage

$$Vrms = \sqrt{\frac{1}{T} \int_{0}^{T} v(t)^{2} dt} = \sqrt{\frac{1}{T} \sum_{t=0}^{T} v(t)^{2}}$$

Rms current

Arms =
$$\sqrt{\frac{1}{T} \int_{0}^{T} i(t)^{2} dt} = \sqrt{\frac{1}{T} \sum_{t=0}^{T} i(t)^{2}}$$

Active power

$$\mathsf{P} = \frac{1}{T} \int_{0}^{T} \mathsf{v}(t) \times \mathsf{i}(t) \mathsf{d}t = \frac{1}{T} \sum_{t=0}^{T} \mathsf{v}(t) \times \mathsf{i}(t)$$

Single-phase three wires (1@3W) or three-phase three wires (3@3W): $\Sigma P = P1 + P2$ Three-phase four wires (3@4W): $\Sigma P = P1 + P2 + P3$ v(i), i(t): Input signals T: One cycle of input signal

	Reactive Power (Note 1)	Apparent Power	Power Factor (Note 2)
1Ø2W	$Q = \sqrt{((VA)^2 - P^2)}$	$VA=V \times A$	P / VA
1Ø3W	Q i= $\sqrt{((VAi)^2 - Pi^2)}$ i=1, 2 $\Sigma Q=Q1+Q2$	VAi=Vi \times Ai i=1, 2 Σ VA=VA1+VA2	
3Ø3W	Q i= $\sqrt{((VAi)^2 - Pi^2)}$ i=1, 2 $\Sigma Q=Q1+Q2$	VAi=Vi × Ai i=1, 2 Σ VA= $\sqrt{3}/2$ (VA1+VA2)	ΣΡ / ΣVΑ
3Ø4W	Q i= $\sqrt{((VAi)^2 - Pi^2)}$ i=1, 2, 3 $\Sigma Q=Q1+Q2+Q3$	VAi=Vi \times Ai i=1, 2, 3 Σ VA= VA1+VA2+VA3	
Calculation range	The rated value depends on the voltage and current ranges.	The rated value depends on the voltage and current ranges.	-1 to +1
Display resolution	Same as active power	Only calculated internally; not displayed nor saved as data.	±1.000

Reactive power and power factor

Note 1: In the case of distorted waves, there may be differences from other measuring instruments that are based on different measurement principles.

Note 2: The polarity each phase determined by the reactive power meter method is multiplied and the polarity is displayed.

Note 3: In the case of three-phase 3-wire and unbalanced inputs, there may be differences from other measuring instruments that are based on different measurement principles, or wiring.

(5) Electric Energy Measurement

Measured parameters	Active electric energy, regenerative electric energy (not displayed, only saved as data)
Measurement accuracy	Measurement accuracy for active power ±1 dgt (with standard settings)
Integration function sett	ings
Start/stop	Manual, specified time, external trigger (remote control)
Output interval	Can be selected from 1, 2, 5, 10, 15, and 30 seconds, 1, 2, 5, 10, 15, and 30 minutes, and 1 hour.
Display digits	Automatic decision based on the rated power. The maximum resolution can be set.

(6) Display Functions

Display screen

Backlit segmented LCD Maximum display digits 4 digits for data other than electric energy 6 digits for electric energy

Ranges (ratings)

					96032 Probe (200–1000 A)				
					96	031 Probe	(50–500 A	\)	
				960	30 Probe ((20–200 A)			
		ç	96033 Prob	oe (5–50 A	.)				
Voltage Range	Phase Lines	5.000A	10.00A	20.00A	50.00A	100.0A	200.0A	500.0A	1.000kA
	1¢2W								
	1¢2W ×2	750.0 W	1.500 kW	3.000 kW	7.500 kW	15.00 kW	30.00 kW	75.00 kW	150.0 kW
150.0 V	1¢2W ×3*								
150.0 V	1¢3W	1.500 kW	3.000 kW	6.000 kW	15.00 kW	30.00 kW	60.00 kW	150.0 kW	300.0 kW
	3¢3W	1.500 kW	3.000 kW	6.000 kW	15.00 kW	30.00 kW	60.00 kW	150.0 kW	300.0 kW
	3¢4W*	2.250 kW	4.500 kW	9.000 kW	22.50 kW	45.00 kW	90.00 kW	225.0 kW	450.0 kW
	1¢2W								
	1¢2W ×2	1.500 kW	3.000 kW	6.000 kW	15.00 kW	30.00 kW	60.00 kW	150.0 kW	300.0 kW
300.0 V	1¢2W ×3*								
300.0 V	1¢3W	3.000 kW	6.000 kW	12.00 kW	30.00 kW	60.00 kW	120.0 kW	300.0 kW	600.0 kW
	3¢3W	3.000 kW	6.000 kW	12.00 kW	30.00 kW	60.00 kW	120.0 kW	300.0 kW	600.0 kW
	3¢4W*	4.500 kW	9.000 kW	18.00 kW	45.00 kW	90.00 kW	180.0 kW	450.0 kW	900.0 kW
450.0 V	1¢2W								
	1¢2W ×2	2.250 kW	4.500 kW	9.000 kW	22.50 kW	45.00 kW	90.00 kW	225.0 kW	450.0 kW
	1¢2W ×3*								
430.0 V	1¢3W	4.500 kW	9.000 kW	18.00 kW	45.00 kW	90.00 kW	180.0 kW	450.0 kW	900.0 kW
	3¢3W	4.500 kW	9.000 kW	18.00 kW	45.00 kW	90.00 kW	180.0 kW	450.0 kW	900.0 kW
	3¢4W*	6.750 kW	13.50 kW	27.00 kW	67.50 kW	135.0 kW	270.0 kW	675.0 kW	1.350 MW

* Only for CW121

(7) Communication Functions

Electrical specifications	Compliant with EIA RS-232 or EIA RS-485		
Synchronization	Asynchronous		
Baud rate	1200, 2400, 4800, 9600, 19200, 38400 bps		

(8) PC Card Interface

Slots	One Type II PC card slot
Applicable cards	Flash ATA memory card
Applications	Saving measured data, saving and loading
	settings

(9) Wiring Error Check Functions

Check items

Existence of input voltages Frequency range Voltage phase sequence Existence of input currents Current-sensing clamp directions

(10) Scaling Function

The VT ratio and CT ratio can be set.

Setting ranges

VT ratio: 1 to 10000 CT ratio: 1 to 10000 in 0.01 increments

(11) External Control Input/Output (provided only with model having RS-232 interface)

Can be used for remote start and end of integration for electric energy measurement.

External control input	TTL level or voltage-free contact
External control output	TTL level or contact

(12) Other Functions

Clock (accuracy: ±100 ppm, typical), key-lock, system resetting

(13) General Specifications

Applicable locations: Indoors, altitude of 2000 m or lower Operating temperature and humidity ranges

 $0^\circ C$ to $50^\circ C,\,5$ to 85% RH (no condensation) When it is applied to UL.

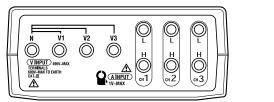
0°C to 40°C, 5 to 85% RH (no

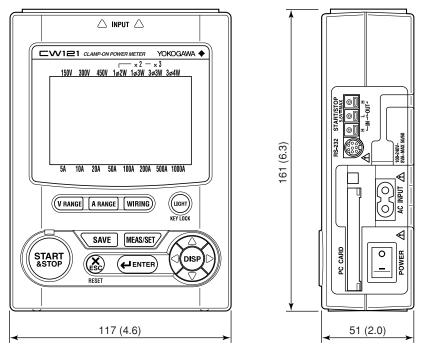
condensation)

Maximum relative humidity 80% RH for

temperature up to 31°C decreasing linearly

to 50% RH relative humidity at 40°C.


Storage temperature and humidity ranges


–20°C to 60°C, 90% RH or less (no condensation)
50 M Ω or more at 500 V DC
between voltage input terminals (short-circuited) and casing;
between voltage input terminals (short-circuited)
and current/communication/external control
input/output terminals (short-circuited);
between power line and casing; and
between power line and current/communication/
external control input/output terminals (short- circuited)

Withstanding voltage	5550 V AC for 1 minute between voltage input terminals (short-circuited) and casing; 3220 V AC for 1 minute between voltage input terminals (short-circuited) and current/ communication/external control input/output terminals (short-circuited); and 2300 V AC for 1 minute between power line and casing, and between power line and current/ communication/external control input/output terminals (short-circuited)
Power supply	100 to 240 V AC ±10%, 50/60 Hz
Power consumption	Maximum 8 VA
External magnetic field	effects
	Within accuracy range at 400 A/m
Dimensions (W \times H \times D)	
Weight	Approximately 0.6 kg
Terminals	
Voltage inputs	CW120: 3 jacks for banana plugs (safety
	terminals) CW121: 4 jacks for banana plugs (safety
	terminals)
Current inputs (H	H/L)
	CW120: 2 pair jacks for banana plugs (safety terminals)
	CW121: 3 pair jacks for banana plugs (safety
	terminals)
External control	
	3 screw-less terminals (H/L/H)
RS-485	4 M3 screw terminals (+/-/SG/TM)
Connectors	
RS-232	Miniature DIN 8 pins
AC power supply	/ 2 pins
Standard accessories	3 (CW120) or 4 (CW121) voltage-sensing
	probes
	Power cord
	User's Manual
	Simple setting software

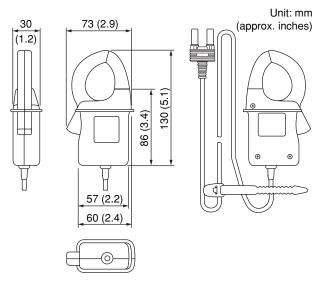
Safety standards:	Compliant with EN61010-1, EN61010-2-030, EN61010-031, UL61010-1, UL61010-31, CAN/CSA-C22.2 No.61010-1, 61010-031 • Voltage measurement circuit: Measurement category CAT III 600 V • Power Supply Overvoltage category II 264 V Indoor use, Altitude 2000 m or less, Pollution degree 2
EMC standards:	Compliant with EN61326-1 Class A, EN61000-2-1, EN61000-3-2, EN61000-3-3, EMC Regulatory Arrangement in Australia and New Zealand EN55011 Class A, Group 1 Korea Electromagnetic Conformity Standard (한국 전자파적합성기준) Measurement error may temporarily occur under immunity environments. This product is Class A for use in an industrial environment and may cause radio interference if used for domestic use. Therefore, appropriate measures must be taken when using it for domestic use. Conditions of cable Measured input When using "Voltage Input Probes" and "Current-sensing Clamps" supplied with the CW120. External control input and output Shield cable: less than 3m

(14) CW120/121 Exterior

Note: This figure shows the CW121, but there is no difference in exterior from the CW120.

Unit: mm (approx. inches)

14.2 Specifications of Clamp-on Current Probes

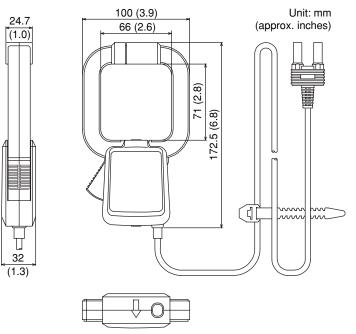

SEE ALSO

For details of specifications, see User's Manual of Clamp.

lt	em	96030 20	A00	96031 500A	
Measurement range		0 to 200 Arms AC (300 Apk)		0 to 500 Arms AC (750 Apk)	
Output volt	age	0 to 0.5 Vrms AC (2.5 mV/A)		0 to 0.5 Vrms AC (1 mV/A)	
	Amplitude	±1.5% of rdg ±0.4 mV (20 Hz to 45 Hz)		±1.5% of rdg ±0.4 mV (20 Hz to 45 Hz)	
		$\pm 0.5\%$ of rdg ± 0.1 mV (45 Hz to 66 Hz)		$\pm 0.5\%$ of rdg ± 0.1 mV (45 Hz to 66 Hz)	
Accuracy		$\pm 0.8\%$ of rdg ± 0.2 mV (66 Hz to 1 kHz)		$\pm 0.8\%$ of rdg ± 0.2 mV (66 Hz to 1 kHz)	
		$\pm 2.0\%$ of rdg ± 0.4 mV (1 kHz to 20 kHz)		$\pm 2.0\%$ of rdg ± 0.4 mV (1 kHz to 5 kHz)	
	Phase	±0.5° (45 Hz to 5 kHz)		$\pm 1^{\circ}$ (50 A or more, 45 Hz to 5 kHz)	
		Under the conditions of the temperature at 23°C ±5°C, humidity at 35 to 75% RH, with sine wave input			
Temperatu	re coefficient	±0.05%/°C in ranges of 5-18°C and 28-40°	°C		
Maximum a	allowed current	250 Arms AC (45 Hz to 1 kHz)		625 Arms AC (45 to 400 Hz)	
Output imp	edance	Approximately 6 Ω		Approximately 2.4 Ω	
External mag	gnetic field effects	0.1 A equivalent or less (at 400 A/m, 50/60 H	Hz)	0.2 A equivalent or less (at 400 A/m, 50/60 Hz)	
Conductor position effects		±0.5% (at 20 to 200 A, 45 Hz to 1 kHz) ±0.5% (at 50 to 500 A, 45 Hz to 1 kHz)		$\pm 0.5\%$ (at 50 to 500 A, 45 Hz to 1 kHz)	
The RATED ci	rcuit-to-earth voltage	600 Vrms AC maximum			
Withstandi	ng voltage	3.7 kVrms AC for 1 minute (core-to-casing, and core-to-output)			
Measurable conductor diameter		30 mm diameter maximum			
Operating and humidi	temperature ity ranges	5 to 40°C, 35 to 80% RH (no condensation)			
Storage temperature and humidity ranges		-20 to 60°C, 90% RH or less (no condensation)			
Environmental conditions		Altitude of 2000 m max, indoor use			
Dimensions (W \times H \times D)		Approximately $73 \times 130 \times 30$ mm			
Weight		Approximately 300 g			
Output terminals		Banana plugs (safety terminals)			
Output cable length		Approximately 3 meters			
Standard accessories		One User's Manual, ring markers (4 colors × 2 each, L4007MG)			
		, , , , , , , , , , , , , , , , , , , ,			

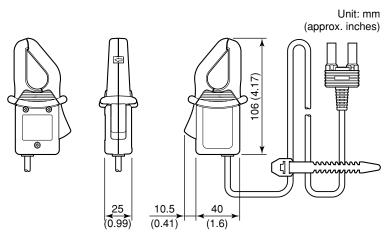
(1) 96030 and 96031 Clamp-on Current Probes

Model 96030/D and 96031/D (Compliant with UL standard): obsolete products

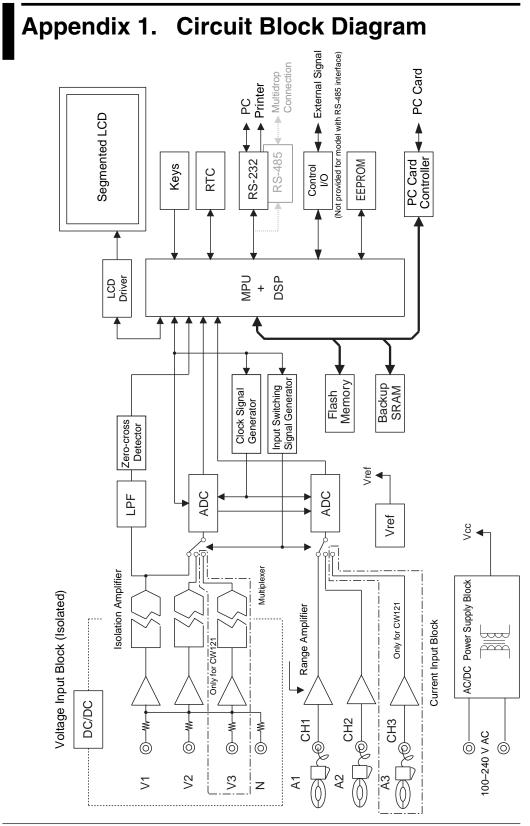


Dimensions of 96030 and 96031 Clamp-on Current Probes

Item		96032 (Max. 1000-A Range)		
Measurement range		0 to 1000 Arms AC (1414 Apk) for 5 minutes		
Output volt	age	0 to 0.25 Vrms AC (0.25 mV/A)		
Accuracy	Amplitude	$\pm 1.0\%$ of rdg ± 0.2 mV (45 Hz to 66 Hz)		
	Phase	$\pm 1.0^\circ$ (for 50 A or higher, 45 Hz to 66 Hz)		
		Under the conditions of the temperature at 23°C $\pm 5^\circ C$, humidity at 35 to 75% RH, with sine wave input		
Temperatu	re coefficient	$\pm 0.05\%$ of full scale/°C, in ranges of 5°C to 40°C		
Maximum a	allowed current	1000 Arms AC for 5 minutes, 700 Arms AC continuous (45 Hz to 66 kHz)		
Output imp	edance	Approximately 100 Ω (maximum)		
External mag	gnetic field effects	0.5 A equivalent or less (at 400 A/m, 50/60 Hz)		
Conductor	position effects	±0.5% (at 200 to 1000 A, 45 Hz to 66 kHz)		
The RATED circuit-to-earth voltage		600 Vrms AC maximum		
Withstanding voltage		2.2 kVrms AC for 1 minute (core-to-casing, and core-to-output)		
Measurable conductor diameter		65 mm diameter maximum, 65 \times 75 mm busbar maximum		
Operating temperature and humidity ranges		5° to 40°C, 35 to 80% RH (no condensation)		
Storage temperature and humidity ranges		-20° to 60°C, 90% RH or less (no condensation)		
Environmental conditions		Indoors, altitude of 2000 m or lower		
Dimensions (W \times H \times D)		Approximately $100 \times 172.5 \times 32$ mm		
Weight		Approximately 500 g		
Output terminals		Banana plugs (safety terminals)		
Output cable length		Approximately 3 meters		
Standard accessories		One User's Manual, ring markers (4 colors × 2 each, L4007MG)		


(2) 96032 Clamp-on Current Probe

Dimensions of 96032 Clamp-on Current Probe



Item		96033 (Max. 50-A Range)		
Measurement range		0 to 50 Arms AC		
Output voltage		0 to 0.5 Vrms AC (10 mV/A)		
Accuracy Amplitude		±1.0% of rdg ±0.3 mV (20 Hz to 45 Hz)		
		±0.5% of rdg ±0.1 mV (45 Hz to 66 Hz)		
		±0.8% of rdg ±0.2 mV (66 Hz to 1 kHz)		
		±1.0% of rdg ±0.3 mV (1 kHz to 5 kHz)		
		±3.0% of rdg ±0.4 mV (5 kHz to 20 kHz)		
	Phase	±1.0° (45 Hz to 1 kHz)		
		Under the conditions of the temperature at 23°C $\pm 5^{\circ}$ C, humidity at 35 to 75% RH, with sine wave input		
Temperatu	re coefficient	$\pm 0.05\%$ of full scale/°C in ranges of 0 to 18°C and 28 to 50°C		
Maximum a	allowed current	130 Arms AC (45 Hz to 1 kHz)		
Output imp	edance	Approximately 18 Ω		
External magnetic field effects		0.1 A equivalent or less (at 400 A/m, 50/60 Hz)		
Conductor position effects		±0.5% (at 1 to 50 A, 45 Hz to 1 kHz)		
The RATED circuit-to-earth voltage		300 Vrms AC maximum		
Withstanding voltage		3.7 kVrms AC for 1 minute (core-to-casing, and core-to-output)		
Measurable conductor diameter		18 mm diameter maximum		
Operating temperature and humidity ranges		0 to 50°C, 5 to 85% RH (no condensation)		
Storage temperature and humidity ranges		-20 to 60°C, 90% RH or less (no condensation)		
Environme	ntal conditions	Altitude of 2000 m max, indoor use		
Dimensions (W \times H \times D)		Approximately $52 \times 106 \times 25$ mm		
Weight		Approximately 220 g		
Output tern	ninals	Banana plugs (safety terminals)		
Output cable length		Approximately 3 meters		
Standard accessories		One User's Manual, ring markers (4 colors \times 2 each, L4007MG)		

(3) 96033 Clamp-on Current Probe

Dimensions of 96033 Clamp-on Current Probe

Circuit Block Diagram

Арр

Appendix 2. Communication Commands

1.	. Commands			App2-2
	1.1	Mess	ages	App2-2
	1.2	Com	mands	App2-4
	1.3	Resp	onse	App2-5
	1.4			
	1.5	Mess	ages on RS-485	App2-8
	1.6		munication Commands	
	1.7	Detai	led Description of Communication Commands	App2-12
		1.7.1	COMMunicate Group	App2-12
		1.7.2	SYSTem Group	App2-13
		1.7.3	INTEgrate Group	App2-15
		1.7.4	MEASure Group	App2-17
		1.7.5	STATus Group	App2-17
		1.7.6	MEMOry Group	
		1.7.7	CARD Group	App2-18
		1.7.8	Common Group	App2-19
2.	Errc	or Mes	sages	Арр 2-20
3.	Con	nmand	l Effectiveness Tables	App 2-24

1. Commands

1.1 Messages

Messages

Communication between the CW120 clamp-on power meter and a personal computer is carried out in blocks of data called messages. Messages sent by the personal computer to the CW120 are called program messages, and messages received by the personal computer from the CW120 are called response messages.

If a received program message contains a query command (a command which requests a response), the CW120 returns a response message. A single response message is always returned in response to a single program message.

Program Messages

As explained above, program messages are sent from the personal computer to the CW120. The format of a program message is shown below.

<Program message unit>;<program message unit>; ... ;<program message unit><PMT>

<Program message unit>

A program message is a train of zero or more program message units; each unit corresponds to one command. The CW120 executes the commands in the order that they are received. Each program unit is separated by a semicolon (;).

<PMT>

PMT is a terminator used to terminate each program message. For the CW120, the terminator is a string of CR (ASCII-code "0DH") and LF (ASCII-code "0AH") characters.

• Format of Program Message Unit

The format of a program message unit is shown below.

<Program header> space <program data>

<Program header>

The program header contains the command type.

<Program data>

If there are certain conditions for executing a command, they are appended as program data. The program data follows the program header and is separated from the program header by a space (ASCII-code "20H"). If there are multiple data, they are separated by a comma (,).

Response Messages

As explained earlier, response messages are sent by the CW120 to the personal computer. The format of a response message is shown below.

<Response message>;<response message>; ... ;<response message><RMT>

<Response message unit>

A response message is a train of one or more response message units; each response message unit corresponds to one response. Each response unit is separated by a semicolon (;).

<RMT>

RMT is a terminator used to terminate each response message. For the CW120, the terminator is a string of CR (ASCII-code "0DH") and LF (ASCII-code "0AH") characters.

• Format of Response Message Unit

The format of a response message unit is shown below.

<Response header> space <response data>

Appendix 2. Communication Commands

<Response header>

It is possible to program the CW120 so a response header precedes the response data. Response data is separated from the header by a space.

<Response data>

Response data contains the contents of the response. If there are multiple data, they are separated by a comma (,).

If a program message contains multiple queries, the responses are made in the same order as the queries. For most queries, the CW120 returns only one response message unit. The CW120 returns more than one response message unit to some queries, however. The first query is always answered with the first response message unit. However, the nth query does not always agree with the nth response message unit. To be certain that the given response message unit corresponds to the correct query, place one query in each program message.

Precautions when Exchanging Messages

- You can send the next message at any time, if the previously sent message did not contain any queries.
- If the previous program message contained a query, you cannot send the next message until the entire response message is received. If you send the next program message before any response message is received or after only part of a message is received, an error will occur. The response message that was not received at all or completely will be discarded.
- If the personal computer tries to receive a response message when there is none, an error will occur. An error also occurs if the personal computer tries to receive a response message before it finishes sending the program message.

 If a program message contains multiple units and some of the units are incomplete, the CW120 will pick up the incomplete units and attempt to execute them. These attempts may not always be successful, however. In addition, even if the program message contained queries, they may not always be responded to.

Deadlock

The CW120 has receive and send buffers for storing program and response messages. Each buffer has a capacity of at least 1024 bytes. (The number of bytes available will vary depending on the operating condition of the CW120.) If both buffers become full at the same time, the CW120 becomes inoperative. This condition is called a deadlock. To resume normal operation, discard response messages. A deadlock will not occur, however, if the size of the program message including the PMT is kept below 1024 bytes. A deadlock never occurs if the program message does not contain any query.

1.2 Commands

Commands

There are two types of command (program header) that can be sent from the personal computer to the CW120. They differ in the format of their program headers.

Common Command Header

Commands defined in IEEE 488.2-1987 are called common commands. The header format of a common command is shown below. An asterisk (*) always precedes a common command.

*<Mnemonic>?

*<Mnemonic>

Compound Header

Commands other than common commands, that are dedicated to the CW120, are classified and arranged in a hierarchy according to their functions. The format of a compound header is shown below. A colon (:) is used to specify a lower-level header.

:<mnemonic>: <mnemonic>: ... :<mnemonic>? :<mnemonic>: <mnemonic>: ... :<mnemonic>

Simple Header

A simple header is a functionally independent command with no hierarchical structure. The format of a simple header is shown below. :<mnemonic>?

:<mnemonic>

When Concatenating Commands

Command Group

A group of commands which share the same compound header is called a command group. A command group may contain sub-groups.

Example: Command group relating to electric energy measurement INTEgrate? INTEgrate:STARt:TIME INTEgrate:STOP:TIME INTEgrate:STORe?

• When Concatenating Commands of the Same Group

The CW120 stores information on which hierarchical level the command currently being executed belongs to, and performs analysis on the assumption that the next command will also belong to the same level. Therefore, you may omit the header of the next command if the two commands belong to the same group.

Example: INTEgrate:STORe:FILE FILE0;STARt: TIME 1999,1,1,0,0<PMT>

When Concatenating Commands of Different Groups

Include a colon (:) before the header, if the following command does not belong to the same group as the preceding command.

Example: SYSTem:CURRent:AUTO ON; :INTEgrate:START:EXECute<PMT>

• When Concatenating Common Commands

Common commands defined in IEEE 488.2-1987 are independent of hierarchy. A colon (:) is not necessary before a common command.

Example: INTEgrate:STORe:FILE FILE0;*CLS; STARt:TIME 1999,1,1,0,0<PMT>

When Separating Commands with <PMT>

If a terminator is used to separate two commands, each command is a separate message. Specify the command header for each command even when the commands from the same command group are being concatenated.

Higher-level Query

A query with a question mark (?) on the topmost-level command in a group is called a higher-level query. Executing a higher-level query allows all the setup data items available with the group to be received at one time.

A response to a higher-level query can be sent exactly as it was received, as a program message to the CW120.

Rules of Header Interpretation

The CW120 interprets a received header according to the following rules.

- Mnemonics are not case-sensitive.
- **Example:** SYSTem can also be written as system or System.
- The lower-case portion of a header can be omitted.

Example: SYSTem can also be written as SYSTE or SYST.

• The question mark (?) at the end of the header denotes a query. You cannot omit the question mark.

Example: SYSTem? cannot be abbreviated to anything shorter than SYST?.

 If the x (numeric value) at the end of the header is omitted, it is assumed to be "1".
 Example: If CHANnel<x> is written as CHAN,

this represents CHAN1.

1.3 Response

Upon receiving a query from the personal computer, the CW120 returns a response message to the computer. A response message is sent in either of the following forms.

- Response consisting of a header and data If the response can be used directly as a program message, the response message will include the command header.
- Response consisting of data only If the response cannot be used directly as a program message (i.e., the response is a query-only command), the response message will include only the data. However, some query-only commands will include a header.

When you want a response without a header

You can have the header removed from a response that has a header and data by using the COMMunicate:HEADer command.

Abbreviated form

Usually, the lower-case letter portion of a response header is abbreviated when it is returned. You can have it not abbreviate the lower-case letters by using the COMMunicate: VERBose command.

1.4 Data

Data

The data section comes after the header. A space must be included between the header and the data. The data contains conditions and values. It is classified as follows.

Data	Description
<decimal></decimal>	Value expressed as a decimal number
<voltage>, <current>, <frequency></frequency></current></voltage>	Value with a physical dimension
<character data=""></character>	Specified character string (mnemonic). Select from { }.
<boolean></boolean>	Indicates ON/OFF. Specify with [ON], [OFF], or a value.
<character data="" string=""></character>	Arbitrary character string
<filename></filename>	Denotes a file name.

<Decimal>

<Decimal> indicates a value expressed as a decimal number, as shown in the table below. Decimal values are given in the NR form specified in ANSI X3.42-1975.

Symbol	Description	Example
<nr1></nr1>	Integer	125 -1 +1000
<nr2></nr2>	Fixed-point number	125.090 +00.1
<nr3></nr3>	Floating-point number	125.0E+0 -9E-1 +.1E4
<nrf></nrf>	Any of the forms <nr1> to <nr3> is allowed.</nr3></nr1>	

- <NRf> represents the case when any of the forms <NR1> to <NR3> can be used. The CW120 accepts decimal values from the personal computer in any form.
- The form, among <NR1> to <NR3>, used for the response message is predetermined for each query. The same form is used irrespective of whether the value is large or small.
- When using <NR3>, the "+" after the "E" can be omitted, but the "-" cannot.
- If a value outside the setting range is specified, the closest valid value will be used.
- If the value specified is beyond the precision of the CW120, the value will be rounded.

<Voltage>, <Time>, <Frequency>

<Voltage>, <Time> and <Frequency> indicate decimal values which have a physical dimension. <Multiplier> or <Unit> can be attached to the <NRf> form. The values are specified in any of the following forms.

Form	Example
<nrf><multiplier><unit></unit></multiplier></nrf>	5MV
<nrf><unit></unit></nrf>	5E-3V
<nrf><multiplier></multiplier></nrf>	5M
<nrf></nrf>	5E-3

<Multiplier>

The following multipliers are available.

Symbol	Word	Description
EX	Exa	10 ¹⁸
PE	Peta	10 ¹⁵
Т	Tera	10 ¹²
G	Giga	10 ⁹
MA	Mega	10 ⁶
К	Kilo	10 ³
М	Mili	10 ⁻³
U	Micro	10 ⁻⁶
Ν	Nano	10 ⁻⁹
Р	Pico	10 ⁻¹²
F	Femto	10 ⁻¹⁵

<Unit>

The following units are available.

Symbol	Word	Description
V	Volt	Voltage
А	Ampere	Current
HZ	Hertz	Frequency
КНΖ	Kilohertz	Frequency

 <Multiplier> and <Unit> are not casesensitive.

"U" is used to indicate "µ".

- "MA" is used for Mega (M) to distinguish it from Mili. If used for current, however, "MA" is interpreted as Milliampere. To refer to Megaampere, write as "MAA".
- If both <Multiplier> and <Unit> are omitted, the default unit (V, A or Hz) will be used.

• Response messages are always expressed in the <NR3> form. The default unit is used without the <Multiplier> or the <Unit>.

<Character Data>

<Character data> is a data of specific characters (mnemonic). It is mainly used to indicate options and is chosen from character strings given in { }. For interpretation rules, see "Rules of Header Interpretation."

Form	Example
{V1 V2 V3}	V1

- As with the header, the COMMunicate: VERBose command can be used to select a full response or an abbreviated response.
- The COMMunicate:HEADer command has no effect on <character data>.

<Boolean>

<Boolean> is a type of data that indicates ON or OFF, and is expressed in one of the following forms.

Form	Example
{ON OFF <nrf>}</nrf>	ON OFF 1 0

- When expressing <Boolean> in <NRf> form, OFF is selected if the rounded integer value is "0" and ON is selected if the rounded integer is "non 0."
- A response message is always "1" if the value is ON and "0" if it is OFF.

<Character String Data>

<Character string data> is an arbitrary character string unlike the <character data>, which uses only specific characters. The character string must be enclosed in single quotation marks (') or double quotation marks (").

Form	Example		
<character data="" string=""></character>	'ABC' "IEE488.2-1987"		

- If a character string contains a double quotation mark ("), use two double quotation marks (" ") to indicate it. This rule also applies to a single quotation mark (') within a character string.
- Response messages always use double quotation marks (") around the character string.
- Since <Character string data> is an arbitrary character string, leaving the end single quotation mark (') or double quotation mark (') will cause the CW120 to interpret the program message unit as part of the <character string data>. As a result, errors may not be detected properly.

<Filename>

<Filename> is data that denotes a file name. It is expressed in one of the following forms.

Form	Example
{ <nrf> <character data=""> <character data="" string="">}</character></character></nrf>	1 CASE "CASE"

- In the <NRf> form, a file name is an ASCIII code obtained by rounding an 8-digit value into an integer (for example, "1" denotes "00000001."). A negative value is not allowed, however.
- In the <character data> or <character string data> form, a file name is the first eight characters.
- A response message is always returned in the <character string data> form.

1.5 Messages on RS-485

Messages

In the same way as in RS-232 communication, RS-485 communication between a CW120 (or CW121) and a personal computer is carried out in blocks of data called messages. In RS-485 communication, an STX (ASCII-code "02H"), the device address, the checksum, an ETX (ASCII-code "03H"), and a CR (ASCII-code "0DH") are attached to each program message sent from the personal computer and each message sent from the CW120 (or CW121) to the personal computer.

If a received program message contains a query command (a command which requests a response), the CW120 (or CW121) returns a response message. If a received program message does not contain a query command, the CW120 (or CW121) returns OK or ERROR as a response message. Also in response to a syntax error in a program message, the CW120 returns ERROR.

Program Messages to CW120/121 and Response from CW120/121

<STX><device address><program message><checksum><ETX><CR>

Range of data to calculate checksum

<STX><device address><response message><checksum><ETX><CR>

Range of data to calculate checksum

STX (start of text)	ASCII-code "02H"	1 byte
Device address	ASCII-codes "000" to "999"	3 bytes
Program message	Uppercase alphabetical and numerical characters	Variable
Checksum	ASCII-codes "00" to "FF"	2 bytes
	A value calculated by summing up the specified block of hexadecimal and encoding the last two digits as ASCII c	
ETX (end of text)	ASCII "03H"	1 byte
CR (terminator)	ASCII "0DH"	1 byte

1.6 **Communication Commands**

Command	Description
COMMunicate Group	
:COMMunicate?	Queries all the communication settings
:COMMunicate:HEADer	Sets/queries whether or not the header is returned in response to
	a query
:COMMunicate:STATus?	Queries status specific to the line
:COMMunicate:VERBose	Sets/queries whether the response to a query is returned in full c abbreviated form
SYSTem Group	
:SYSTem?	Queries all the system settings
:SYSTem:BACKlight	Sets/queries whether the LCD backlight is set to ON or OFF
:SYSTem:CLAMp	Sets/queries the type of clamp
:SYSTem:CURRent?	Queries all the settings relating to the current range
:SYSTem:CURRent:RANGe	Sets/queries the current range settings
:SYSTem:DATE	Sets/queries the date
:SYSTem:DISPlay?	Queries the type of screen
:SYSTem:KLOCK	Sets/queries the keylock function
:SYSTem:RESEt	Resets the system
:SYSTem:SCALing?	Queries all the settings relating to scaling
:SYSTem:SCALing:CT	Sets/queries the CT ratio
:SYSTem:SCALing:VT	Sets/queries the VT ratio
:SYSTem:TIME	Sets/queries the time
:SYSTem:VOLTage?	Queries all the settings relating to the voltage range
:SYSTem:VOLTage:RANGe	Sets/queries the voltage range
:SYSTem:WIRIng	Sets/queries the wiring
INTEGrate Group	
:INTEgrate?	Queries all the settings relating to electric energy measurement
:INTEgrate:CLEAr	Clears integrated values to zero
:INTEgrate:DISPlay?	Queries all the settings relating to measurement screen
:INTEgrate:DISPlay:LOAD	Sets/queries the load whose data is viewed
:INTEgrate:DISPlay:MODE	Sets/queries the mode of measurement screen
:INTEgrate:STARt?	Queries all the settings relating to the start of measurement
:INTEgrate:STARt:EXECute	Starts measurement
:INTEgrate:STARt:METHod	Sets/queries the method for starting measurement
:INTEgrate:STARt:TIME	Sets/queries the starting time of measurement
:INTEgrate:STATe?	Queries the measurement status
:INTEgrate:STOP?	Queries all the settings relating to the end of measurement
:INTEgrate:STOP:EXECute	Stops measurement
:INTEgrate:STOP:TIME	Sets/queries the ending time of measurement

- Queries all the settings relating to the data output, file name, and output interval
- Sets/queries whether data output is set to ON or OFF
- Sets/queries the name of a file to be saved
- Sets/queries the output interval

:INTEgrate:STORe?

:INTEgrate:STORe:STATe

:INTEgrate:STORe:FILEname :INTEgrate:STORe:INTErval

Appendix 2. Communication Commands

Command	Description
:INTEgrate:WH?	Queries all the settings relating to the display digits and unit of electric energy
:INTEgrate:WH:DIGIt	Sets/queries the display digits of electric energy
:INTEgrate:WH:UNIT	Sets/queries the display unit of electric energy
MEASure Group	
:MEASure:INTEgrate?	Queries all the settings relating to Electric Energy Measure mode communication-output data
:MEASure:INTEgrate:ITEM?	Queries all the settings relating to Electric Energy Measure mode communication-output data items
:MEASure:INTEgrate:ITEM <electric< td=""><td>Energy Measure mode data item> Sets/queries whether Electric Energy Measure mode communication-output data items are set to ON or OFF</td></electric<>	Energy Measure mode data item> Sets/queries whether Electric Energy Measure mode communication-output data items are set to ON or OFF
:MEASure:INTEgrate:ITEM:ALL	Sets all effective Electric Energy Measure mode communication- output data to ON
:MEASure:INTEgrate:ITEM:CLEAr	Sets all effective Electric Energy Measure mode communication- output data to OFF
:MEASure:INTEgrate:ITEM:VALUe?	Queries the measurement data item set with a command that follows the :MEASure:INTEgrate:ITEM query
STATus Group	
: STATus?	Queries all the settings relating to the status of the communication function
:STATus:ERRor?	Queries the error code and message (head of the error queue)
:STATus:OMESsage	Queries whether or not to add to the message contents to the :STATus:ERRor? response
MEMOry Group	
:MEMOry?	Queries all the settings relating to the internal memory
:MEMOry:DATA?	Queries the number of data backed up in the internal memory
:MEMOry:SEND?	Transfers data backed up in the internal memory
CARD Group	
:CARD?	Queries all the settings relating to the PC card
:CARD:DELEte?	Deletes the file that was specified using the :CARD:FILEname and :CARD:TYPE commands
:CARD:DIREctory?	Queries all the file names that have been set using the :CARD:TYPE command
:CARD:FILEname	Sets/queries the names of all files that reside in the PC card
:CARD:FORMat	Formats the PC card
:CARD:PICKout?	Queries all the settings relating to transfer of a specified range of file contents
:CARD:PICKout:END	Sets/queries the transfer end point
:CARD:PICKout:SEND?	Transfers the specified range of the contents of the file that was specified using the :CARD:FILEname and :CARD:TYPE commands

Command	Description
:CARD:PICKout:STARt	Sets/queries the transfer start point
:CARD:SEND?	Transfers the contents of the file that was specified using the
	:CARD:FILEname and :CARD:TYPE commands
:CARD:SETTing	Creates a setting file in the PC card and saves the current settings to it
:CARD:STATe	Queries the PC card status
:CARD:TYPE	Sets/queries which type of files in the PC card is to be accessed
Common Command Group	
*CLS	Clears the error queue
*IDN?	Queries the meter model

Output Queue and Error Queue

Output Queue

The output queue is provided to store response messages to queries. For example, when the :MEASure:INTEgrate:VALUe? query is sent to request output of measured data, the response data will be stored in the output queue until it is read out.

Data items are stored in sequence in the output queue and then read out on a first-in-first-out basis. The output queue is emptied in any of the following cases, in addition to a case when it is entirely read out.

- A new message is received from the personal computer.
- A deadlock occurs.
- The power is turned on again.

Error Queue

The error queue stores the error number and message when an error occurs. For example, if the personal computer sends an illegal program message, the error queue stores error number 113 and the error message "Undefined header." The contents of the error queue can be read using the STATus:ERRor? query. As with the output queue, messages in the error queue are read out on a first-in-first-out basis.

If the error queue overflows, the last message is replaced with message 350, "Queue overflow." The error queue is emptied in either of the following cases, in addition to a case when it is entirely read out).

- The *CLS command is received.
- The power is turned on again.

1.7 Detailed Description of Communication Commands

1.7.1 COMMunicate Group

The commands in the COMMunicate group are used to set or query communication parameters.

:COMMunicate?

Function	Queries all the communication
	settings.
Syntax	:COMMunicate?
Example	:COMMUNICATE?
	\rightarrow :COMMUNICATE:HEADER
	1;VERBOSE 1;STATUS 0
,	:COMMUNICATE? →:COMMUNICATE:HEADER

:COMMunicate:HEADer

Function	Sets/queries whether or not the
	header is returned in response to a
	query.
Syntax	:COMMunicate:HEADer
	{ <boolean>}</boolean>
	:COMMunicate:HEADer?
Example	:COMMUNICATE:HEADER ON
	:COMMUNICATE:HEADER? \rightarrow
	:COMMUNICATE:HEADER 1

:COMMunicate:STATus?

- Function Queries the status specific to the line.
- Syntax :COMMunicate:STATus?

Example :COMMUNICATE:STATUS?→ :COMMUNICATE:STATUS 0

- Description The status bits have the following meanings.
 - Bit 0: Parity error

Bit 1: Framing error

Bit 2: BREAK character detected

Bit 3 and later: Always 0

If one of the causes noted above occurs, the corresponding status bit is set. The bit is cleared when the status is read.

:COMMunicate:VERBose

- Function Sets/queries whether the response to a query is returned in full or abbreviated form.
- Syntax :COMMunicate:VERBose {<Boolean>} :COMMunicate:VERBose?
- Example :COMMUNICATE:VERBOSE ON :COMMUNICATE:VERBOSE?→ :COMMUNICATE:VERBOSE 1

1.7.2 SYSTem Group

The commands in the SYSTem group set or query system parameters.

:SYSTem?

Function	Queries all the system settings.
Syntax	:SYSTem?

:SYSTem:BACKlight

Function Sets/queries whether the LCD backlight is set to ON or OFF.

Syntax :SYSTem:BACKlight? :SYSTem:BACKlight {<Boolean>}

:SYSTem:CLAMp

Function Sets/queries the type of clamp.

Syntax :SYSTem:CLAMp?

:SYSTem:CLAMp $\{$ <NRf> $\}$

- <NRf> = 0: 5 to 50 A
 - 1:20 to 200 A
 - 2: 50 to 500 A
 - 3: 200 to 1000 A

:SYSTem:CURRent?

Function Queries all the settings relating to the current range.

Syntax :SYSTem:CURRent?

:SYSTem:CURRent:RANGe

Function Sets/queries the current range.
Syntax :SYSTem:CURRent:RANGe?
:SYSTem:CURRent:RANGe
{<NRf>}
<NRf> = 0:5 A
1:10 A
2:20 A
3:50 A
4:100 A
5:200 A
6:500 A
7:1000 A

:SYSTem:DATE

Function	Sets/queries the date.	
Syntax	:SYSTem:DATE?	
	<pre>SYSTem:DATE {<nrf1>,</nrf1></pre>	
	<nrf2>, <nrf3>}</nrf3></nrf2>	
	<nrf1> = Year: 2000 to 2099</nrf1>	
	<nrf2> = Month: 1 to 12</nrf2>	
	<nrf3> = Day: 1 to 31</nrf3>	

:SYSTem:DISPlay?

Function	Queries the screen currently	
	displayed.	
Syntax	:SYSTem:DISPlay?	
	<nrf> = 0: Instantaneous value or</nrf>	
	electric energy	
	measurement screen	
	1: Wiring check	

:SYSTem:KLOCk

- Function Sets/queries whether the key-lock function is set to ON or OFF.
- Syntax :SYSTem:KLOCk? :SYSTem:KLOCk {<Boolean>}

:SYSTem:RESEt

Function Executes system resetting. Syntax :SYSTem:RESEt

:SYSTem:SCALing?

Function Queries all the settings relating to scaling.

Syntax :SYSTem:SCALing?

:SYSTem:SCALing:CT

Function Sets/queries the CT ratio.
Syntax :SYSTem:SCALing:CT?
:SYSTem:SCALing:CT {<NRf>}
<NRf> = 1.00 to 10000.00

:SYSTem:SCALing:VT

- Function Sets/queries the VT ratio.
- Syntax :SYSTem:SCALing:VT? :SYSTem:SCALing:VT {<NRf>} <NRf> = 1 to 10000

:SYSTem:TIME

Function Sets/queries the clock.
Syntax :SYSTem:TIME?
:SYSTem:TIME
{<NRf1>, <NRf2>, <NRf3>}
<NRf1> = hour: 0 to 23
<NRf2> = minute: 0 to 59
<NRf3> = second: 0 to 59

:SYSTem:VOLTage?

- Function Queries all the settings relating to the voltage range.
- Syntax :SYSTem:VOLTage?

:SYSTem:VOLTage:RANGe

- Function Sets/queries the voltage range.
- Syntax :SYSTem:VOLTage:RANGe? :SYSTem:VOLTage:RANGe {<NRf>} <NRf> = 0:150 V 1:300 V 2:450 V

:SYSTem:WIRIng

Function Sets/queries the wiring type. Syntax :SYSTem:WIRIng? :SYSTem:WIRIng {<NRf>}

> <NRf> = 0: 1¢2W 1: 1¢3W 2: 3¢3W 3: 3¢4W 4: 1¢2W ×2 5: 1¢2W ×3

1.7.3 INTEgrate Group

The commands in the INTEgrate group set or query electric energy measurement parameters.

:INTEgrate?

Function Queries all the settings relating to electric energy measurement.

Syntax :INTEgrate?

:INTEgrate:CLEAr

FunctionClears integrated values to zero.Syntax:INTEgrate:CLEAr

:INTEgrate:DISPlay?

- Function Queries all the settings relating to measurement screen.
- Syntax :INTEgrate:DISPlay?

:INTEgrate:DISPlay:LOAD

- Function Sets/queries the load whose data is viewed
- Syntax :INTEgrate:DISPlay:LOAD? :INTEgrate:DISPlay:LOAD {<NRf>} <NRf> = 0:Load 1 1:Load 2
 - 2: Load 3

:INTEgrate:DISPlay:MODE

Function Sets/queries the type of

measurement screen.

- Syntax :INTEgrate:DISPlay:MODE? :INTEgrate:DISPlay:MODE {<NRf>}
 - <NRf> = 0: Display item 1
 - 1: Display item 2
 - 2: Display item 3
 - 3: Display item 4
 - 4: Display item 5
 - 5: Display item 6

:INTEgrate:STARt?

Function Queries all the settings relating to the start of measurement. Syntax :INTEgrate:STARt?

:INTEgrate:STARt:EXECute

- Function Starts measurement.
- Syntax :INTEgrate:STARt:EXECute

:INTEgrate:STARt:METHod

- Function Sets/queries the method for starting measurement.
- Syntax :INTEgrate:STARt:METHod? :INTEgrate:STARt:METHod {<NRf>} <NRf> = 0:Time 1: Manual

:INTEgrate:STARt:TIME

 $\label{eq:sphere:sphe$

:INTEgrate:STATe?

- Function Queries the measurement status.
- Syntax :INTEgrate:STATe?
 - :INTEgrate:STATe
 - <NR1> =0: Stop
 - 1: Ready for measurement
 - 2: Integration in progress

:INTEgrate:STOP?

Function Queries all the settings relating to the end of measurement.

Syntax :INTEgrate:STOP?

:INTEgrate:STOP:EXECute

Function Stops measurement.

Syntax :INTEgrate:STOP:EXECute

:INTEgrate:STOP:TIME

Function Sets/queries the ending time of measurement.

:INTEgrate:STORe?

- Function Queries all the settings relating to output destination and data items to be saved.
- Syntax : INTEgrate: STORe?

:INTEgrate:STORe:STATe

Function Sets/queries whether data output is set to ON or OFF.

Syntax :INTEgrate:STORe:STATe? :INTEgrate:STORe:STATe {<Boolean>}

:INTEgrate:STORe:FILEname

- Function Sets/queries the name of a file to be saved.
- Syntax :INTEgrate:STORe:FILE? :INTEgrate:STORe:FILE <Filename> <Filename> = Up to 8 characters

:INTEgrate:STORe:INTErval

- Function Sets/queries the output time interval.
- - 30 seconds, or 1, 2, 5, 10, 15, 30 minutes, or 1 hour.

:INTEgrate:WH?

- Function Queries all the settings relating to the display digits and unit of electric energy. Syntax :INTEgrate:WH?

:INTEgrate:WH:DIGIt

- Function Sets/queries the display digits of electric energy.
- Syntax :INTEgrate:WH:DIGIt? :INTEgrate:WH:DIGIt {<NRf>} <NRf> = 0: Standard 1:000.000
 - 2:0000.00
 - 3:00000.0
 - 4:000000

:INTEgrate:WH:UNIT

- Function Sets/queries the display unit of electric energy.
- Syntax :INTEgrate:WH:UNIT?
 - :INTEgrate:WH:UNIT {<NRf>}

<NRf> = 0: Wh

1: kWh

- 2: MWh
- 3: GWh

1.7.4 MEASure Group

The commands in the MEASure group set or query parameters relating to data acquisition in each measurement mode.

:MEASure:INTEgrate?

- Function Queries all the settings relating to the communication output data on electric energy measurement.
- Syntax :MEASure:INTEgrate?

:MEASure:INTEgrate:ITEM?

- Function Queries all the settings for data items of communication output data on electric energy measurement.
- Syntax :MEASure:INTEgrate:ITEM?

:MEASure:INTEgrate:ITEM:<measured data

items>

fe	Sets/queries the ON/OFF statuses for data items of communication output data on electric energy		
n	neasurement.		
Syntax :	MEASure:INTEgr	ate:ITEM	
:	<measured data<="" td=""><td>a items></td></measured>	a items>	
{	<boolean>}</boolean>		
<	Measured data iter	ms> =	
0: V1	1: V2	2: V3	
3: 1, 1-1	4: I2	5: I3	
6: P, P-1	7: Q, Q-1	8: PF, PF-1	
9: F	10: +Wh, +Wh-1	11: -Wh, -Wh-1	
12: 11-2			
13: P-2	14: Q-2	15: PF-2	
16: +Wh-2 17: -Wh-2			
18: l1-3			
19: P-3	20: Q-3	21: PF-3	
22: +Wh-3	23 :-Wh-3		

:MEASure:INTEgrate:ITEM:ALL

Function	Sets all effective data items of		
	communication output data on		
	electric energy measurement to ON.		
Syntax	:MEASure:INTEgrate:ITEM		
	ALL		

:MEASure:INTEgrate:ITEM:CLEAr

- Function Resets all effective data items of communication output data on electric energy measurement to OFF.
- Syntax :MEASure:INTEgrate:ITEM :CLEAr

:MEASure:INTEgrate:ITEM:VALUe?

- FunctionQueries the measured values of the
data items that were set to ON
using the :MEASure:INTEgrate:ITEM:<items>, :MEASure
:INTEgrate:ITEM:ALL, and
:MEASure:INTEgrate:ITEM:CLEAr
commands.Syntax:MEASure:INTEgrate:ITEM
 - SYNTAX :MEASure:INTEgrate:ITEN :VALUe?

1.7.5 STATus Group

:STATus?

Function	Queries all the settings relating to
	the status of the communication
	function.
Syntax	:STATus?

:STATus:ERRor?

Function Queries the error code and message (head of the error queue).

- Syntax :STATus:ERRor?
- Description If there is no error, '0, "No error" ' is returned.
 - You can set whether or not to add the message contents using the "STATus:QMESsage" command.

:STATus:OMESsage

- Function Sets/queries whether or not to add the message contents to the STATus:ERRor? response.
- Syntax :STATus:OMESsage {<Boolean>} :STATus:OMESsage?

1.7.6 MEMOry Group

The MEMOry group contains commands relating to acquisition of backup data in the internal memory.

:MEMOry:DATA?

Function Queries the number of data backed up in the internal memory. Syntax :MEMOry:DATA?

:MEMOry:SEND?

- Function Transfers the data backed up in the internal memory.
- Syntax :MEMOry:SEND? :MEMOry:SEND? → STX (ASCII-code "02H"), file contents, ETX (ASCII-code "03H") The STX and ETX are not attached in RS-485 communication.

1.7.7 CARD Group

The CARD group contains commands relating to the inserted PC card.

:CARD:DELEte?

- Function Deletes the file that was specified using the :CARD:FILEname and :CARD:TYPE commands.
- Syntax :CARD:DELEte?

:CARD:DIREctory?

- Function Queries all the file names that have been set using the :CARD:TYPE command.
- Syntax :CARD:DIREctory?

:CARD:FILEname

- Function Sets/queries the names of all files that reside in the PC card.
- Syntax :CARD:FILEname?

:CARD:FILEname {<Filename>} <Measured data items> = Up to 8 characters

:CARD:FORMat

Function Formats the PC card. Syntax :CARD:FORMat

:CARD:PICKout?

- Function Queries all the settings relating to transfer of a specified range of file contents.
- Syntax :CARD:PICKout?

:CARD:PICKout:END

- Function Sets/queries the transfer end point.
- Syntax :CARD:PICKout:END? :CARD:PICKout:END {<NRf>} <NRf> = 1 to 2147483647

:CARD:PICKout:SEND?

- FunctionTransfers the contents (for the
range specified using the
:CARD:PICKout:STARt and
:CARD:PICKout:END commands)
of the file that was specified using
the :CARD:FILEname and
:CARD:TYPE commands.Syntax:CARD:PICKout:SEND?
 - → STX (ASCII-code "02H"), file contents, ETX (ASCII-code "03H") The STX and ETX are not attached in RS-485 communication.

:CARD:PICKout:STARt

Function Sets/queries the transfer start point.

:CARD:PICKout:STARt :CARD:PICKout:STARt {<NRf>} <NRf> = 1 to 2147483647

:CARD:SEND?

Syntax

- Function Transfers the contents of the file that was specified using the :CARD:FILEname and :CARD:TYPE commands.
- Syntax :CARD:SEND? → STX (ASCII-code "02H"), file contents, ETX (ASCII-code "03H"), <RMT> The STX and ETX are not attached in RS-485 communication.

:CARD:SETTing

Function Creates a setting file in the PC card and saves the current settings to it. Syntax :CARD:SETTing {<NRf>}

<NRf> = 0 to 29 (file number)

:CARD:STATe

Function Queries the PC card status. Syntax :CARD:STATe?

CARD:STATE {<NRf>}

<NRf> = 0: A card is not set.
1: A card is set.

:CARD:TYPE

- Function Sets/queries which type of files in the PC card is to be accessed.
- Syntax : CARD: TYPE
 - :CARD:TYPE {<NRf>}
 - <NRf> = 1: Auto-storing file
 - 3: File containing currently measured values
 - 4: Setting file

1.7.8 Common Group

*CLS (ClearStatus)

FunctionClears the error queue.Syntax*CLS

*IDN? (IDeNtify)

FunctionQueries the meter model.Syntax*IDN?DescriptionA reply sequence is returned as
follows:
<Manufacturer>, <Model>, <Serial
No.>, <Firmware version>.
<Serial No.> is not returned in
actual applications (always 0).

2. Error Messages

The following describes only errors messages relating to communication. These messages are divided into the following groups by the error code:

Command syntax errors:	Codes 100 to 199
Communication execution errors:	Codes 200 to 299
Query errors:	Codes 400 to 499
Command execution errors:	Codes 600 to 799
System error:	Code 912

Code	Message	Countermeasure
102	Syntax Error	Check the command string. There is an error other than those corresponding to codes 103–158.
103	DATA SEPARATOR Invalid separator	Use commas to separate data (parameters) from each other.
104	DATA Data type error	Code the parameter in the correct data type.
108	DATA Parameter not allowed	Too many parameters are set. Check the number of parameters.
109	DATA Missing parameter	Code all the necessary parameters.
111	HEADER SEPARATOR Header separator error	Separate the header from data by a space.
112	mnemonic Program mnemonic too long	Check the mnemonic (an alphabetical letter followed by a number).
113	Ubdefined header	Check the header.
114	HEADER Header suffix out of range	Check the header.
120	Numeric data error	No mantissa is set in a numeric data. An <nrf> format parameter requires a numeric value.</nrf>
123	Exponent too large	Reduce the number that follows "E" in an <nr3> format parameter.</nr3>
124	Too many digits	Do not set a number in 256 digits or more.
128	Numeric data not allowed	Code the parameter in a format other than <nrf>.</nrf>
131	Invalid suffix	Check the units (suffixes) of the voltage, current, and frequency.
134	Suffix too long	Check the units (suffixes) of the voltage, current, and frequency.
138	Suffix not allowed	A unit (suffix) cannot be used for any item other than voltage, current, and frequency.
141	Invalis character data	Choose a string from those given in braces {]}.
144	CHARACTER DATA Character data too long	Choose a string from those given in braces { } an quote it using the exact spelling.
148	CHARACTER DATA Character data not allowed	Code the parameter in the correct format other than $\{ \}$.
150	STRING DATA String data error	Enclose the parameter in <character string=""> format in double quotes.</character>
151	STRING DATA Invalid string data	The parameter in <character string=""> format is too long of contains an invalid string.</character>
158	STRING DATA String data not allowed	Set the parameter in a format other than <character string:<="" td=""></character>

Command Syntax Errors (Codes 100 to 199)

Code	Message	Countermeasure
200	Execution error	The specified command cannot be carried out.
221	221 Setting conflict Check the setting with other related settings.	
222	Data out of range	Check the setting range.
223	Too much data	Check the byte length of the parameter.
224	Illegal parameter value	Check the setting range.
241	Hardware missing Check the options equipped.	

Communication Execution Errors (Codes 200 to 299)

Query Errors (Codes 400 to 499)

Code	Message	Countermeasure
410	Query INTERRUPTED	Check the transmission-reception sequence.
420	Query UNTERMINATED	Check the transmission-reception sequence.
430	Query DEADLOCKED	Limit the length of each program message within 1024 bytes including the <pmt>.</pmt>
440	Query UNTRMINATED after indefinite response	Do not code a query following "*IDN?".

Code	Message		Countermeasure
600	[Ard Err	· PC card not ready.	The PC card is not set. Insert a PC card.
601	Err. 10 I	PC card write error.	A writing access is disabled since the PC card was removed during access or the card is damaged. Insert a card that is not damaged.
602	Err. 102	PC card read error.	A reading access is disabled since the PC card was removed during access or the card is damaged. Insert a card that is not damaged.
603	Err. 103	Directory full.	The number of files that can be created in the card has exceeded the limit. Delete unnecessary files or use a different card.
604	Err. 104	Invalid PC card.	The inserted PC card is not a flash ATA memory card. Insert a flash ATA memory card.
605	Err. 105	Card not formatted.	The inserted PC card has not yet been formatted in MS-DOS format. Format it with the power meter.
606	Err. 106	Can not use this card.	A PC card not supported by the power meter is inserted.
607	Err. 1 12	PC card error.	An error relating to the PC card, other than the above, has occurred.

Command Execution Errors (Codes 600 to 799)

System Error (Code 912)

Code	Message	Countermeasure
912	Fatal error Communication-driver	Needs to be serviced.

Other Errors (Codes 350 and 390)

Code	Message	Countermeasure
350	Queue overflow	Read the error queue.
390	Overrun error(RS-232)	Decrease the baud rate.

3. Command Effectiveness Tables

(1) COMMunicate Group

Status Command	Integration in Progress	Integration Stopped	Wiring Check	Setting
: COMMunicate?	>	>	\checkmark	~
: HEADer?	>	>	\checkmark	 Image: A start of the start of
: HEADer	>	>	\checkmark	\checkmark
: STATus?	>	>	✓	<
: VERBose?	\checkmark	\checkmark	\checkmark	\checkmark
: VERBose	>	>	\checkmark	>

Slank: Ineffective

(2) SYSTem Group

Status Command	Integration in Progress	Integration Stopped	Wiring Check	Setting
: SYSTem?	\checkmark	\checkmark	\checkmark	\checkmark
: BACKlight?	\checkmark	~	\checkmark	\checkmark
: BACKlight	\checkmark	\checkmark	\checkmark	~
: CLAMp?	\checkmark	\checkmark	\checkmark	\checkmark
: CLAMp		Cond.		
: CURRent?	\checkmark	\checkmark	\checkmark	\checkmark
: CURRent				
: RANGe?	\checkmark	\checkmark	\checkmark	\checkmark
: RANGe		Cond.		
: DATE?	\checkmark	\checkmark	\checkmark	\checkmark
: DATE		\checkmark		
: DISPlay?	\checkmark	\checkmark	\checkmark	\checkmark
: KLOCk?	\checkmark	\checkmark	\checkmark	\checkmark
: KLOCk	\checkmark	\checkmark		
: RESEt		\checkmark		
: SCALing?	\checkmark	\checkmark	\checkmark	\checkmark
: SCALing				
: CT?	\checkmark	\checkmark	\checkmark	\checkmark
: CT		Cond.		
: VT?	\checkmark	\checkmark	\checkmark	\checkmark
: VT		Cond.		
: TIME?	\checkmark	\checkmark	\checkmark	\checkmark
: TIME		\checkmark		
: VOLTage?	✓	\checkmark	\checkmark	\checkmark
: VOLTage				
: RANGe?	\checkmark	\checkmark	\checkmark	\checkmark
: RANGe		Cond.		
: WIRIng?	\checkmark	\checkmark	\checkmark	\checkmark
: WIRIng		Cond.		

Effective
 Blank : Ineffective
 Cond.: Conditional; setting is not allowed during integration

(3) INTEgrate Group

Status Command	Integration in Progress	Integration Stopped	Wiring Check	Setting
: INTEgrate?	\checkmark	\checkmark	✓	\checkmark
: CLEAr		~		
: DISPlay?	\checkmark	\checkmark	✓	\checkmark
: DISPlay				
: LOAD?	\checkmark	\checkmark	\checkmark	\checkmark
: LOAD		~		
: MODE?	\checkmark	~	\checkmark	\checkmark
: MODE		~		
: STARt?	\checkmark	~	 ✓ 	\checkmark
: STARt				
: EXECute		\checkmark		
: METHod?	\checkmark	\checkmark	\checkmark	\checkmark
: METHod		\checkmark		
: TIME?	\checkmark	\checkmark	 ✓ 	~
: TIME		\checkmark		
: STATe?	\checkmark	\checkmark	\checkmark	\checkmark
: STOP?	\checkmark	~	✓	~
: STOP				
: EXECute	\checkmark			
: TIME?	\checkmark	~	\checkmark	~
: TIME		~		
: STORe?	\checkmark	\checkmark	\checkmark	\checkmark
: STORe				
: STATe?	\checkmark	~	 ✓ 	~
: STATe		\checkmark		
: FILEname?	\checkmark	\checkmark	\checkmark	\checkmark
: FILEname		\checkmark		
: INTErval?	\checkmark	\checkmark	\checkmark	\checkmark
: INTErval		\checkmark		
: WH?	\checkmark	\checkmark	\checkmark	\checkmark
: WH				
: DIGI?	\checkmark	\checkmark	\checkmark	\checkmark
: DIGI		\checkmark		
: UNIT?	\checkmark	\checkmark		\checkmark
: UNIT		\checkmark		

Effective Blank: Ineffective

(4) MEASure Group

Status Command	Integration in Progress	Integration Stopped	Wiring Check	Setting
: MEASure				
: INTEGrate?	✓	\checkmark	 ✓ 	\checkmark
: INTEGrate				
: ITEM?	\checkmark	\checkmark	\checkmark	\checkmark
: ITEM				
	\checkmark	\checkmark		
:	\checkmark	\checkmark		
: ALL	✓	\checkmark		
: CLEAr	✓	\checkmark		
: VALUe?	\checkmark	\checkmark		

Slank: Ineffective

(5) STATus Group

Status Command	Integration in Progress	Integration Stopped	Wiring Check	Setting
: STATus?	<	~	<	~
: STATus	<	>	<	\checkmark
: ERRor?	<	>	<	\checkmark
: OMESsage?	 Image: A start of the start of	\checkmark	 Image: A start of the start of	\checkmark
: OMESsage	>	>	 	>

Slank: Ineffective

(6) MEMOry Group

Status Command	Integration in Progress	Integration Stopped	Wiring Check	Setting
: MEMOry				
: DATA?	✓	>	\checkmark	\checkmark
: SEND?		~		

Slank: Ineffective

(7) CARD Group

Status Command	Integration in Progress	Integration Stopped	Wiring Check	Setting
: CARD?	✓	\checkmark	✓	\checkmark
: DELEte		\checkmark		
: DIREctory?		\checkmark		
: FILEname?	\checkmark	\checkmark	\checkmark	\checkmark
: FILEname		\checkmark		
: FORMat		\checkmark		
: PICKout?	\checkmark	\checkmark	\checkmark	\checkmark
: PICKout				
: END?	✓	\checkmark	✓	\checkmark
: END	\checkmark			
: SEND?		\checkmark		
: STARt?	\checkmark	\checkmark	✓	\checkmark
: STARt		\checkmark		
: SEND?		\checkmark		
: SETT	\checkmark			
: STATe?	✓	\checkmark	✓	\checkmark
: TYPE?	\checkmark	\checkmark	\checkmark	\checkmark
: TYPE		\checkmark		

Slank: Ineffective

(8) Common Command Group

Status Command	Integration in Progress	Integration Stopped	Wiring Check	Setting
*CLS	 Image: A start of the start of	>	\checkmark	\checkmark
*IDN?	~	>	~	\checkmark

Effective Blank: Ineffective

Appendix

Appendix 3. File Structures and Data Items Printed

1.	Ove	rview		App 3-2
			Data	
	2.1	File F	Format	App 3-3
		2.1.1	File Identifier	App 3-3
		2.1.2	File Type	App 3-3
			Measurement Mode	
		2.1.4	Data Field Titles and Data Formats	App 3-4
			Records of Power Failure/Restoration Information	
	2.2	Print	Format	Арр 3-6
		2.2.1	Print Item Titles and Data Formats	App 3-6
3.	Sett	ings		App 3-8
		-	Format	
	3.2	Outp	ut Format and Data Values	App 3-9
	3.3	Print	Format	App 3-11
4.			: File Naming	

Арр

1. Overview

There are two types of data sets that may be saved to a file and printed: one is measured data, and the other is settings. Measured data is saved by a user action during instantaneous value measurement or automatically during electric energy measurement.

The printer (97010) has been discontinued from 2013.

(1) Measured Data

• Manual saving:

Pressing the SAVE key outputs the measured data to a file.

Automatic saving:

Measured data is output to a file periodically at a specified interval after measurement begins.

(2) Settings

The current settings of measurement conditions are output to a file or printer.

2. Measured Data

2.1 File Format

Measured-data files are in CSV format. Each file contains the file identifier, file type number, measurement mode, titles of measured data items (data field titles), and measured values. From the second and subsequent times when data is saved to the same file, only the measured values are added.

"CW12x"	← File identifier characters
"File Type",0	\leftarrow File type number
"MeasureMode",1	← Measurement mode
"OUTPUT DATE","OUTPUT TIME",(data title),Wh(-)	\leftarrow Title of measured data items (data field titles)
yyyy/mm/dd,hh:mm:ss,(measured value),x.xxxxxE+xx	\leftarrow Measured value record 1
yyyy/mm/dd,hh:mm:ss,(measured value),x.xxxxE+xx	← Measured value record 2

2.1.1 File Identifier

Characters for identifying that the file was created by a CW120 or CW121 are output. File identifier: CW12x

2.1.2 File Type

The file type identification code is output following "FileType".

Identification Code	File Type
0	File containing data saved automatically
2	File containing current measured data saved manually
3	File containing settings

2.1.3 Measurement Mode

The mode identification code is output following "MeasureMode".

Identification Code	File Type
1	Electric energy measurement

	Title			Depending on Wiring Method		
No.		Data Format	Data Format Output Availability 12		1Ø3W 3Ø3W	3Ø4W
1	OUTPUT DATE	yyyy/mm/dd	Output date		\checkmark	
2	OUTPUT TIME	hh:mm:ss	Output time		\checkmark	
3	INTEG START DATE	yyyy/mm/dd	Integration start date		\checkmark	
4	INTEG START TIME	hh:mm:ss	Integration start time		\checkmark	
5	ELAPSED TIME	hhhhh:mm:ss	Elapsed time of integration		\checkmark	
6	V1	±0.000E ±00	Voltage 1 (V)	 Image: A start of the start of	\checkmark	\checkmark
7	V2	±0.000E ±00	Voltage 2 (V)		\checkmark	\checkmark
8	V3	±0.000E ±00	Voltage 3 (V)			\checkmark
9	11	±0.000E ±00	Current 1 (A)	 Image: A start of the start of	\checkmark	
10	12	±0.000E ±00	Current 2 (A)		\checkmark	\checkmark
11	13	±0.000E ±00	Current 3 (A)			\checkmark
12	Р	±0.000E ±00	Active power (W)		\checkmark	
13	Q	±0.000E ±00	Reactive power (Var)		\checkmark	
14	PF	±0.000 ±00	Power factor		\checkmark	
15	F	±0.000E ±00	Frequency (Hz)		\checkmark	
16	Wh (+)	±0.00000E ±00	Active electric energy (Wh)		\checkmark	
17	Wh (–)	±0.00000E ±00	Regenerative electric energy (Wh)		\checkmark	

2.1.4 Data Field Titles and Data Formats

Note: An invalid or overflowed value is output as "----" or "OR".

Na	Title	Data Farmat			Depending on Wiring Method	
No.	o. Title Data Format Output Availability			1Ø2W×2	1Ø2W×3	
1	OUTPUT DATE	yyyy/mm/dd	Output data			
2	OUTPUT TIME	hh:mm:ss	Output time			
3	INTEG START DATE	yyyy/mm/dd	Integration data			
4	INTEG START TIME	hh:mm:ss	Integration time]	
5	ELAPSED TIME	hhhhh:mm:ss	Elapsed time of integration]	
6	V1	±0.000E ±00	Voltage 1 (V)			
7	11-1	±0.000E ±00	Current 1 (A)			
8	P-1	±0.000E ±00	Active power (W)	Load1		
9	Q-1	±0.000E ±00	Reactive power (Var)	LUaur		
10	PF-1	±0.000E ±00	Power factor			
11	F	±0.000E ±00	Frequency (Hz)			
12	Wh (+)-1	±0.00000E ±00	Active electric energy (Wh)	Load1]	
13	Wh (–)-1	±0.00000E ±00	Regenerative electric energy (Wh)	LUaur		
14	l1-2	±0.000E ±00	Current 1 (A)]	 ✓
15	P-2	±0.000E ±00	Active power (W)			
16	Q-2	±0.000E ±00	Reactive power (Var)	Load2		
17	PF-2	±0.000E ±00	Power factor	LUauz		
18	Wh (+)-2	±0.00000E ±00	Active electric energy (Wh)			
19	Wh (–)-2	±0.00000E ±00	Regenerative electric energy (Wh)			
20	l1-3	±0.000E ±00	Current 1 (A)		/	
21	P-3	±0.000E ±00	Active power (W)			
22	Q-3	±0.000E ±00	Reactive power (Var)	Load3		
23	PF-3	±0.000E ±00	Power factor	LUaus		
24	Wh (+)-3	±0.00000E ±00	Active electric energy (Wh)			
25	Wh (–)-3	±0.00000E ±00	Regenerative electric energy (Wh)		/	

2.1.5 **Records of Power Failure/Restoration Information**

After a power failure during automatic saving was in progress, the times when the power failure and restoration occurred are output as power failure/restoration information in the following format before new data values are output:

"CW12x"

"File Type",0

"MeasureMode",1

"OUTPUT DATE","OUTPUT TIME",...(data title)...,Wh(-)

"POWER OFF", yyyy/mm/dd, hh:mm:ss

"POWER ON",yyyy/mm/dd,hh:mm:ss

- ← Title of measured data items (data field titles)
- ← Power failure information
- ← Power restoration information

2.2 Print Format

A single item is printed per line. Each numeric value is printed in significant digits.

yyyy/mm/dd	hh:mm:ss	Printing date
Integration start time		Integration start time
yyyy/mm/dd	hh:mm:ss	
Elapsed time	hhhhh:mm:ss	Elapsed time of integration

2.2.1 Print Item Titles and Data Formats

				Depending on Wiring Method		
No.	Title	Data Format Output Availability		1Ø2W	1∅3W 3∅3W	3Ø4W
1		yyyy/mm/dd hh:mm:ss	Output date and time		\checkmark	
2	Integration start time	yyyy/mm/dd hh:mm:ss	Integration start date and time		\checkmark	
3	Elapsed time	hhhhh:mm:ss	Elapsed time of integration		\checkmark	
4	V1		Voltage 1 (V)	\checkmark	>	\checkmark
5	V2		Voltage 2 (V)		<	\checkmark
6	V3		Voltage 3 (V)			\checkmark
7	11		Current 1 (A)	\checkmark	>	\checkmark
8	12		Current 2 (A)		<	\checkmark
9	13	It is same as displayed	Current 3 (A)			\checkmark
10	Р	on the screen.	Active power (W)		~	
11	Q		Reactive power (Var)		\checkmark	
12	PF		Power factor		\checkmark	
13	F		Frequency (Hz)		\checkmark	
14	Wh(+)		Active electric energy (Wh)		\checkmark	
15	Wh(–)		Regenerative electric energy (Wh)		\checkmark	

Note: An invalid or overflowed value is printed as "----" or "OR".

	Title	Data Format	at Output Availability		Depending on Wiring Method	
No.	Title	Data Format			1Ø2W ×2	1Ø2W×3
1		yyyy/mm/dd hh:mm:ss	Output data and time			
2	Integration start time	yyyy/mm/dd hh:mm:ss	Integration start data and time			
3	Elapsed time	hhhhh:mm:ss	Elapsed time of integration			
4	V1		Voltage 1 (V)			
5	11-1		Current 1 (A)			
6	P-1		Active power (W)	Load1		
7	Q-1		Reactive power (Var)	LUaui		
8	PF-1		Power factor			
9	F		Frequency (Hz)		\checkmark	
10	+Wh-1		Active electric energy (Wh)	Load1		
11	–Wh-1		Regenerative electric energy (Wh)	LUaui		
12	l1-2		Current 1 (A)			\checkmark
13	P-2	It is same as displayed	Active power (W)			
14	Q-2	on the screen.	Reactive power (Var)	Load2		
15	PF-2		Power factor	LUauz		
16	+Wh-2		Active electric energy (Wh)			
17	–Wh-2		Regenerative electric energy (Wh)			
18	11-3		Current 1 (A)		/	
19	P-3		Active power (W)			
20	Q-3		Reactive power (Var)	Load3		
21	PF-3		Power factor	LOad3		
22	+Wh-3		Active electric energy (Wh)			
23	–Wh-3		Regenerative electric energy (Wh)		\vee	

Note: An invalid or overflowed value is output as "----" or "OR".

IM CW120-E

3. Settings

3.1 File Format

Setting files are text files. In the same way as in measured-data files, the contents of each setting file begin with the file identifier, file type number, and measurement mode.

0	/ //
"CW12x"	
FileType	3
MeasureMode	1
Wiring	х
SetVRange	x
MeasVRange	х
Vt	х
Ct	х
ClampType	х
No	х
Device	х
BaudRate	х
DataLength	х
Parity	х
StopBit	х
Handshaking	х
	x: Setting

3.2 Output Format and Data Values

Item Title	Setting	Description	Meaning of Settings
Wiring	0 to 5	Phase lines	 Single-phase two wires Single-phase three wires Three-phase three wires, two currents Three-phase four wires Single-phase two wires ×2 Single-phase two wires ×3
SetVRange	1 to 4	Set voltage range	1: 150 V 2: 300 V 3: 450 V
MeasVRange	1 to 4	Voltage measurement range	1: 150 V 2: 300 V 3: 450 V
SetARange	1 to 8	Set current range	1: 5 A 2: 10 A 3: 20 A 4: 50 A 5: 100 A 6: 200 A 7: 500 A 8: 1000 A
MeasARange	1 to 8	Current measurement range	1: 5 A 2: 10 A 3: 20 A 4: 50 A 5: 100 A 6: 200 A 7: 500 A 8: 1000 A
DOut	0 or 1	Data output	0: Off 1: On
DOut_Filename	xxxxxxxx	File name	Up to 8 characters
Integ_StartDate	yyyy/mm/dd	Integration start date	yyyy = year from 2000 to 2099; mm = month; dd = day
Integ_StartTime	hh:mm:ss	Integration start time	hh = hour; mm = minute; ss = second
Integ_EndDate	yyyy/mm/dd	Integration end date	yyyy = year from 2000 to 2099; mm = month; dd = day
Integ_EndTime	hh:mm:ss	Integration end time	hh = hour; mm = minute; ss = second
Integ_Interval	hhhh:mm:ss	Output interval	hhhh = hours; mm = minutes; ss = seconds
WhDigit	0 to 4	Display digits of electric energy	0: Standard 1: 000.000 2: 0000.00 3: 00000.0 4: 000000
WhUnit	0 to 3	Display unit of electric energy	0: Wh 1: kWh 2: MWh 3: GWh

Item Title	Setting	Description	Meaning of Settings
Vt	1 to 10000	VT ratio	
Ct	1.00 to 10000.00	CT ratio	
No	1 to 999	Device number	
ClampType	0 to 3	Clamp-on probe type	0: 50-A probe 1: 200-A probe 2: 500-A probe 3: 1000-A probe
Device	0 or 1	Connected device	0: Printer 1: PC
BaudRate	0 to 4	Baud rate	0: 1200 bps 1: 2400 bps 2: 4800 bps 3: 9600 bps 4: 19200 bps 5: 38400 bps
DataLength	7 or 8	Data bits	7 or 8 bits
Parity	0 to 2	Parity	0: None 1: Even 2: Odd
StopBit	1 or 2	Stop bits	1 or 2 bits
Handshaking	0 to 3	Flow control	0: ON/OFF 1: XON/XOFF 2: XON/RS 3: CS/RS

3.3 Print Format

The print format is as shown below.

yyyy/mm/dd	bh:mm:cc	
	111.11111.55	
Wiring		: x
SetVRange		: x
MeasVRange		: x
Vt		: x
Ct		: x
ClampType		: x
No		: x
Device		: x
BaudRate		: x
DataLength		: x
Parity		: x
StopBit		: x
Handshaking		: x
		x: Setting

4. Automatic File Naming

When the file name is not specified (though users can specify the name only for automatic saving), the power meter automatically names the file as follows:

Automatic saving:	AWTHxxx.CSV
Manual saving of instantaneous values:	MWTHxxx.CSV
Setting file:	WTHxxx.SET

where xxx is the smallest, unused number from 000 to 029.

Appendix 4. Reactive Power

Reactive Power

The calculation obtains the reactive power through the following formula from apparent power VA (the product of the rms values of the voltage and current) and active power P. Even if differing frequency elements are included in the voltage and current, it is calculated as the rms value. To determine lead/lag of the voltage and current, calculation by the reactive power method is performed separately, and the polarity obtained by this method is used for polarity (SQ).

When the current lags behind the voltage : No polarity display

When the current leads the voltage : Polarity display is – (minus).

$$\begin{split} Q &= SQ \sqrt{(VA)^2 - P^2} \\ Q &= \text{Reactive power} \\ SQ &= \text{Polarity obtained through} \\ \text{the reactive power method} \\ VA &= \text{Apparent power} \\ P &= \text{Active power} \end{split}$$

The power factor is also obtained from the apparent power and the active power, and this power factor is called the rms value power factor. It is an operation that is used commonly. The polarity obtained with the reactive power method is used to be able to determine lead/lag of the power factor polarity as well.

The reactive power method

The calculation shifts the current phase 90° , in the same manner as a common wattmeter, and measures the reactive power directly.

$$\begin{split} Q &= \frac{1}{T} \int_{0}^{T} \!\! v(t) \times i(t \text{+} \frac{T}{4}) dt \\ Q &= \text{Reactive power} \\ v(t), \, i(t) &= \text{Input signal} \\ T &= \text{1 cycle of input signal} \end{split}$$

Appendix 5. Using Clamp 96034 or 96035

■ Using 96034

96034	1000 A range	2000 A range	3000 A range
Measurement range	0 to 1000 Arms AC	0 to 2000 Arms AC	0 to 3000 Arms AC
Output voltage	0 to 0.5 Vrms AC (0.5 mV/A)	0 to 0.5 Vrms AC (0.25 mV/A)	0 to 0.5 Vrms AC (0.1667 mV/A)
Maximum allowable current (600Hz or less)	1200 Arms AC (for continuous operation)	2400 Arms AC (for continuous operation)	2400 to 2800 Arms AC (for 15 minutes) 2800 to 3600 Arms AC (for 10 minutes)
Setting the clamp		mp to the 200 A (Rating: 20/50/ 16 "Selecting Clamp-on Current	
Setting	CT ratio = 5	CT ratio = 10	CT ratio = 15
the CT ratio	For de	tails, see 7.2.15 "Setting CT Rat	o"
Measurement accuracy	At 1 to 200 A, power factor=1 (i Current/Active power: ±(1.2%	5 17	
Power factor effects		Hz ¢=±0.5 (reactive to power factor in∳=±0.5 (relative to reactive po	

■ Using 96035

96035	300 A range	3000 A range
Measurement range	0 to 300 Arms AC	0 to 3000 Arms AC
Output voltage	0 to 0.5 Vrms AC (1.667 mV/A)	0 to 0.5 Vrms AC (0.1667 mV/A)
Maximum allowable current	360 Arms AC	3600 Arms AC (10Hz to 1kHz)
Setting the clamp		(Rating: 20/50/100/200 A) lamp-on Current Probe to Be Used."
Setting	CT ratio = 1.5	CT ratio = 15
the CT ratio	For details, see 7.2.15	"Setting CT Ratio"
Measurement accuracy	At 1 to 200 A, power factor=1 (including the cla Current/Active power: ±(1.2%rdg+0.8%rng)	mp)
Power factor effects	$ \begin{array}{l} \mbox{For 45Hz} \leq f \leq 65\text{Hz} \\ \mbox{Active power: $\pm 2.0\%$rng $\cos\phi=\pm0.5$ (reactive to power factor 1)} \\ \mbox{Reactive power: $\pm 2.0\%$rng $\sin\phi=\pm0.5$ (relative to reactive power 1)} \end{array} $	

Index

Α

В

Backlight	
Backup memory	1-3, 2-8, 2-9, 7-1,
7-3,	7-10, 9-13, 9-16, 9-17,
	9-18, 10-6, 12-2, 13-1

С

Clamp-on current probe to be used
Selecting6-8, 7-27
Clearance of all settings and data 12-2
Clock 7-11, 12-1, 14-5, App1-1
Communication device 1-3, 2-8, 7-1,
7-3, 7-7, 7-19, 8-6, 12-5
Communication settings 1-3, 2-8, 7-1,
7-20
Connector 2-1, 2-2, 11-1, 11-2, 11-6,
14-6
CT1-3, 2-6, 2-8, 3-5, 5-1, 5-4,
6-2, 6-3, 6-4, 6-6, 6-7, 6-9,
6-10, 7-1, 7-24, 7-25, 7-26,
7-29, 13-2, 14-5, App3-10
Current range 1-1, 2-5, 2-8, 4-6,
6-1, 6-2, 6-6, 6-7, 6-10, 7-24,
7-26, App3-9
Current ranges6-8
Current transformer 2-6, 5-1, 5-4, 7-25

D

Е

Electric energy
Clearing 1-3, 2-5, 7-9, 9-9
Electric energy measurement 1-3, 1-4,
4-6, 7-12, 7-13, 7-18, 7-33,
8-1, 8-5, 8-7, 9-1, 9-13, 9-15,
10-5, 10-6, 14-3, 14-5,
App2-13, App2-17,
Арр3-2, Арр3-3
Energy measurement9-14
Energy measurement mode7-3
External control 1-3, 2-2, 5-1, 7-14,
7-16, 9-3, 9-7, 9-19, 9-20,
9-21, 14-5, 14-6

F

File name
10-5, 10-6, App2-9,
App2-10, App2-18, App3-9
Formatting7-1
Frequency measurement8-8, 8-9

I

Installation3-3, 13-1
Instantaneous value measurement
1-3, 1-4, 2-5, 4-6, 8-1, 8-4,
8-5, 9-1, 9-8, 9-10, 9-13,
9-19, 10-5, 12-6, 14-2, App3-2
Integration
Starting and stopping
Integration start date8-7

Integration start date and time 2-8, 2-9,
7-1, 7-14, 7-15, 8-7, 9-4, 9-5,
9-6, 9-7, 9-15, App3-4,
Арр3-6, Арр3-9
Integration stop date and time2-8,
7-1, 7-16, 7-17, 9-7, 9-8

Κ

Key		2-5
Key lock	12-1,	13-1

L

Μ

Maximum allowable input2-6, 5-1
Maximum allowable input voltage 5-1
Measured file 13-2
Measured-data file
N
Naming7-33
Measured-data file
9

Ν

Naming App3-12

0

Output interval 1-3, 2-8, 2-9, 7-1, 7-12, 7-13, 7-15, 7-17, 7-18, 8-5, 9-6, 9-7, 9-8, 9-13, 10-5, 13-2, 14-3, App2-9, App3-9

Ρ

PC card 4, 1-1, 1-3, 2-2, 2-8, 2-9, 4-2, 7-1, 7-5, 7-7, 7-8, 7-10, 7-13, 7-18, 8-5, 8-6, 9-3, 9-4, 9-6, 9-13, 9-14, 9-15, 9-16, 9-17, 9-22, 10-1, 10-2, 10-3, 10-4, 10-5, 10-6, 10-7, 13-2, 14-4, App1-1, App2-10, App2-11, App2-18, App2-19, App2-23 Enabling/Disabling data saving ... 7-18 Formatting 1-3, 2-8, 7-8, 10-4

Personal computer 1-1, 7-19, 10-7,
11-7, 12-5, App2-8
Power failure and recovery
Actions upon9-22
Power supply 2-2, 3-3, 3-5, 4-1, 4-2,
4-3, 4-6, 13-1, 14-6, App1-1
Printer 1-3, 2-2, 2-8, 7-7, 7-19, 8-6,
11-1, 12-3, 12-4, 12-5,
Арр1-1, Арр3-2, Арр3-10

R

Ranges 1-1, 6-1, 6-8, 7-27, 8-1, 9-2,
13-1, 14-1, 14-4, 14-5, 14-9,
14-11, 14-12
Regenerative electric energy 1-4, 8-7,
9-1, 9-15, 14-3,
App3-4, App3-6
Regenerative energy 7-9, 9-22, 12-2
Resetting system 1-3, 7-9
RS-232 2-2, 7-19, 9-19, 10-7, 11-1,
11-2, 11-3, 11-7, 12-3, 12-5,
14-4, 14-6, App2-8
RS-485 2-2, 7-3, 7-4, 7-19, 10-7,
11-6, 11-7, 11-8, 14-4, 14-6,
App1-1, App2-8,
App2-18, App2-19

S

Sampling8-9, 14-1
Self-test 4-4, 4-5, 13-1
Setting decimal point position7-29
Setting device number 1-3
Setting item 2-8, 6-8, 7-1, 7-2, 7-3,
7-4, 7-5, 7-6, 7-7, 7-8, 7-9,
7-10, 7-11, 7-12, 7-13, 7-14,
7-15, 7-16, 7-18, 7-19, 7-20,
7-21, 7-23, 7-25, 7-28, 7-30,
7-31, 7-32, 9-9, 9-17, 9-18,
10-4, 10-6
Settings
Loading10-6, 14-4
Loading/saving1-3
Saving 1-3, 2-8, 7-1, 7-5, 7-7, 10-6
Startup screens4-4, 4-6

Т

Terminating resistor 11-6, 11-7

U

Unit 1-3, 1-4, 2-8, 5-3, 6-2, 6-3, 6-4, 7-1, 7-29, 7-30, 7-31, 7-32, 8-1, 8-3, 9-1, 9-11, App2-10, App2-16, App2-21, App3-9

V

W

Wiring 1-1, 1-2, 2-5, 4-6, 5-1, 5-4,
5-6, 5-7, 5-8, 5-9, 6-11, 8-1,
9-2, 9-21, 11-7, 11-8, 14-5,
App2-13, App2-24,
App2-25, App2-26,
App2-27, App2-28, App3-9
Check Function5-6
Diagrams5-2
Method 1-3, 1-4, 2-5, 2-8, 5-3,
5-5, 5-7, 6-1, 6-6, 6-7,
6-9, 6-10, 7-28, 8-1, 8-2,
8-3, 8-6, 9-1, 9-2, 9-10,
9-11, 12-6, App3-4, App3-6
Methods 5-2