
Technical
Information

VJ Series

M Series

WXT

JHT200

VJ77

Functions of VJ, M, and WXT
Free-Program Computing Units

TI 231-01EN

TI 231-01EN
©Copyright Feb.2000 (MCC)

6th Edition Jan. 2017 (YK)

Yokogawa Electric Corporation
2-9-32, Nakacho, Musashino-shi, Tokyo, 180-8750 Japan

i

TI 231-01EN Jan..06, 2017-00

Introduction
The VJ, M Series, and WXT free-program computing units for the JUXTA signal conditioners
receive signals such as voltage, current, and contact, apply various computing functions to them,
and then convert them into isolated DC voltage, DC current, or contact signals.
The computing units are available in six models that differ depending on their series and input/
output specifications. Each one of them has an interface circuit for communication with a Handy
Terminal and can perform the following:

•	 Setting computation programs

•	 Entering computation parameters

•	 Setting zero and span of the input range

•	 Monitoring input and output values

Table 1.1 Models of Free-Program Computing Units

Series
M Series
(Plug-in type)

VJ Series
(Compact plug-in
type)

WXT
(Front-panel
terminal type)

Model
M X D - A

M X S - A
M X T- A
VJXS-A
VJX7-A

W X T- A

Description
One analog input, one contact input, one isolated
analog output, and one isolated contact output
One analog input and two isolated analog outputs
Three analog inputs and one isolated analog output
One analog input and two isolated analog outputs
One analog input and one isolated analog output
Option (Can select from second isolated analog output,
communication output, or two contact outputs)
Three analog inputs and one isolated analog output

In addition, it is possible to collectively set and load setting data and programs from a PC using
the VJ77 Parameter Setting Tool.

Media No. IM 231-01EN	 6th Edition : Jan. 2017 (YK)
All Rights Reserved Copyright © 2000-2015, Yokogawa Electric Corporation

ii

TI 231-01EN Jan..06, 2017-00

	 Notice
•	 The contents of this manual are subject to change without notice as a result of continuing

improvements to the instrument’s performance and functions.

•	 Every effort has been made to ensure accuracy in the preparation of this manual. Should
any errors or omissions come to your attention, however, please inform Yokogawa Electric’s
sales office or sales representative.

•	 Under no circumstances may the contents of this manual, in part or in whole, be transcribed
or copied without our permission.

	 Trademarks
•	 Our product names or brand names mentioned in this manual are the trademarks or

registered trademarks of Yokogawa Electric Corporation (hereinafter referred to as
YOKOGAWA).

•	 Microsoft, MS-DOS, Windows, Windows XP, Windows Vista, and Windows 7 are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

•	 Adobe, Acrobat, and Postscript are either registered trademarks or trademarks of Adobe
Systems Incorporated.

•	 We do not use the TM or ® mark to indicate these trademarks or registered trademarks in
this user’s manual.

•	 All other product names mentioned in this user’s manual are trademarks or registered
trademarks of their respective companies.

Toc-1

TI 231-01EN Jan..06, 2017-00

Functions of VJ, M, and WXT
Free-Program Computing Units

CONTENTS

TI 231-01EN

Introduction...i
1.	 Block Diagram and Terminal Arrangement.. 1-1

1.1	 MXD Free-Program Computing Unit.. 1-1
1.2	 MXS Free-Program Computing Unit..1-2
1.3	 MXT Free-Program Computing Unit..1-3
1.4	 VJXS Free-Program Computing Unit... 1-4
1.5 	 VJX7 Free-Program Computing Unit... 1-5
1.6	 WXT Free-Program Computing Unit.. 1-7

2.	 Operation of Computation Program... 2-1
2.1	 Basic Flow..2-1
2.2	 Principle of Computation..2-2
2.3	 Program Structure, Capacity, and Interval.. 2-3

3.	 Computational Operations and Applications.. 3-1
3.1	 Program Commands and Corresponding Registers..................................... 3-2
3.2	 Arithmetical Operation..3-4
3.3	 Square Root Extraction without Variable Low-cut Point............................... 3-5
3.4	 Square Root Extraction with Variable Low-cut Point (1)............................... 3-6
3.5	 Square Root Extraction with Variable Low-cut Point (2)............................... 3-7
3.6	 Square Root Extraction with Variable Low-cut Point (3)............................... 3-8
3.7	 Absolute Value...3-9
3.8	 Selector...3-10
3.9	 Limiter... 3-11
3.10	 Line Segment Function...3-12
3.11	 Comparison..3-19
3.12	 Signal Switching..3-20
3.13	 First-order Lag Computation..3-21
3.14	 First-order Lead (Differential Calculus)...3-22
3.15	 Dead Time Computation...3-23
3.16	 Velocity Computation..3-25
3.17	 Velocity Limiter...3-27
3.18	 Moving Average Computation..3-29
3.19	 Timer..3-31

Toc-2

TI 231-01EN Jan..06, 2017-00

3.20	 Status Change Detection (for MXD-A Only)..3-33
3.21	 Pulse Input Counter (for MXD-A Only)...3-34
3.22	 Integrated Pulse Output Counter (for MXD Only)...3-35
3.23	 Alarm...3-36
3.24	 Logical Operation..3-38
3.25	 Trigonometric Function (for VJX7 and WXT Only).......................................3-39
3.26	 Other Functions...3-42
3.27	 Unconditional Jump..3-44
3.28	 Conditional Jump...3-44
3.29 	 S Register Exchange...3-45
3.30	 S Register Rotation..3-46
3.31	 No Operation..3-47
3.32	 Contact Input and Output (for MXD-A and VJX7 with Optional Contact Output Only)..3-47
3.33	 User Flag...3-48
3.34 	 End of Computation...3-48

4.	 Programming... 4-1
4.1	 Programming Procedures.. 4-2
4.2	 Programming Exercise (Temperature-pressure compensation for ideal gas

flow control)..4-3

5.	 Program Entry and Setting Fixed Constants... 5-1
Appendix 1. List of Program Functions..App-1
Appendix 2. Work Sheet...App-3
Appendix 3. Data Sheet (for WXT)...App-4
Appendix 4. Data Sheet (for VJX7, VJXS, MXS, MXD and MXT)................ App-5
Appendix 5. Program Sheet...App-6
Revision Information..i

		 1. Block Diagram and Terminal Arrangement 1-1

TI 231-01EN Jan..06, 2017-00

1.	 Block Diagram and Terminal
Arrangement

1.1	 MXD Free-Program Computing Unit
1.1.1	 Block Diagram

Operation indicating lamp
Handy Terminal

or PC

5

6

3

4

7

8

6

1

2

1

2

10

11

7

8

9

-

+

-

+

L+

N-

GND

• Computation
• I/O adjustments

Low drift
input

processing
 circuit

+

-

Output
circuit

Analog output

+

-
Contact output

Power supply

Adjustment switch

Selection switch

R: External
 resister for
 current input

Analog input

Contact input

R
Analog output circuit

Contact output circuit

Power supply circuit

Insulation circuit

Insulation circuit

Micro-processor

Figure 1.1.1 MXD Free-Program Computing Unit Block Diagram

1.1.2	 Terminal Assignments

8 7 6 5

10 11 1 2

9 3

4

 1 Analog Output (+)
 2 Analog Output (–)
 3 Contact Input (+)
 4 Contact Input (–)
 5 Analog Input (+)
 6 Analog Input (–)
 7 Power Supply (L+)
 8 Power Supply (N–)
 9 GND (GND)
 10 Contact Output (+)
 11 Contact Output (–)

Figure 1.1.2 MXD Free-Program Computing Unit Terminal Arrangement

1

2

5

3

6

4

7

		 1. Block Diagram and Terminal Arrangement 1-2

TI 231-01EN Jan..06, 2017-00

1.2	 MXS Free-Program Computing Unit
1.2.1	 Block Diagram

Operation indicating lamp

7

8

6

1

2

1

2

10

11

7

8

9

5

6

L+

N-

GND

• Computation
• I/O adjustments

Low drift
input processing

 circuit

+

-

+

-
Adjustment switch

Selection switch

-

+

R

R: External
 resister for
 current input

Input

Handy Terminal
or PC

Power supply circuit

Output-1 circuit

Output-2 circuit

Output
circuit

Output-2

Output-1

Power supply

Output
circuit

Insulation circuit

Insulation circuit

Micro-processor

Figure 1.2.1 MXS Free-Program Computing Unit Block Diagram

1.2.2	 Terminal Assignments

8 7 6 5

10 11 1 2

9 3

4

 1 Output 1 (+)
 2 Output 1 (–)
 3 Prohibited to connect
 4 Prohibited to connect
 5 Input (+)
 6 Input (–)
 7 Power Supply (L+)
 8 Power Supply (N–)
 9 GND (GND)
 10 Output 2 (+)
 11 Output 2 (–)

Figure 1.2.2 MXS Free-Program Computing Unit Terminal Arrangement

		 1. Block Diagram and Terminal Arrangement 1-3

TI 231-01EN Jan..06, 2017-00

1.3	 MXT Free-Program Computing Unit
1.3.1	 Block Diagram

5

6

3

4

10

11

7

8

6

1

2

1

2

7

8

9
Power supply circuit

-

+

L+

N-

GND

• Computation
• I/O adjustments

Low drift
input

processing
 circuit

+

-

Output
circuit

Output

Power supply

Adjustment switch

Selection switch

Input 1 R

-

+

Input 2 R

-

+

Input 3 R

Output-1 circuit

Operation indicating lamp
Handy Terminal

or PC

R: External resister for current input

Insulation circuit

Micro-processor

Figure 1.3.1 MXT Free-Program Computing Unit Block Diagram

1.3.2	 Terminal Assignments

8 7 6 5

10 11 1 2

9 3

4

 1 Output (+)
 2 Output (–)
 3 Input 2 (+)
 4 Input 2 (–)
 5 Input 1 (+)
 6 Input 1 (–)
 7 Power Supply (L+)
 8 Power Supply (N–)
 9 GND (GND)
 10 Input 3 (+)
 11 Input 3 (–)

Figure 1.3.2 MXT Free-Program Computing Unit Terminal Arrangement

1

2

5

3

6

4

7

		 1. Block Diagram and Terminal Arrangement 1-4

TI 231-01EN Jan..06, 2017-00

1.4	 VJXS Free-Program Computing Unit
1.4.1	 Block Diagram

7

8

6

1

2

8

R: External
 resister for
 current input

Input R

Power supply circuit

Output-1 circuit

Output-2 circuit
(No output-2 circuit for
 1-output type models)

• Computation
• I/O adjustments

Output
circuit

Output-2

Low drift
input processing

L+

N-

GND

+

-
Output-1

Power supply

Output
circuit

Micro-processor

7

9

2

5

10

114

8

1

3-

+

Handy Terminal
or PC

+

-

Insulation circuit

Insulation circuit

Figure 1.4.1 VJXS Free-Program Computing Unit Block Diagram

1.4.2	 Terminal Assignments

4

1

5

23

78

1011

9

6

 1 Input (+)
 2 Output 2 (+)
 3 Input (–)
 4 Prohibited to connect
 5 Output 2 (–)
 6 Prohibited to connect
 7 Output1 (+)
 8 GND (G)
 9 Output1 (–)
 10 Power Supply (L+)
 11 Power Supply (N–)

Note: For 1-output type models, the output 2 terminals
are not connected (Prohibited to connect).

Figure 1.4.2 VJXS Free-Program Computing Unit Terminal Arrangement

		 1. Block Diagram and Terminal Arrangement 1-5

TI 231-01EN Jan..06, 2017-00

1.5 	 VJX7 Free-Program Computing Unit
1.5.1	 Block Diagram

External resistor
for current input

Handy
Terminal

JHT

1

3

4

INPUT

Input processing
circuit

A
/D

 converter

P

P

P

Output-1 circuit
Output
circuit

+

–

+

–

OUTPUT1
7

9

10

11

8

2

5

6

2

5

6

2

5

6

SUPPLY

GND

OUTPUT2

N.C.

L+

N-

Power supply circuit

When optional code A or 6 (Analog output) is specified.

Output
circuit

Output-2 circuit

When optional code T (Contact output) is specified.

Relay

Relay

Contact
output circuit

Contact
output 1
COM
(common)
Contact
output 2

When optional code P (RS-485 output) is specified.

Output
circuit

Communication output circuit

B(+)

A(-)

COM

Figure 1.5.1 VJX7 Free-Program Computing Unit Block Diagram

1

2

5

3

6

4

7

		 1. Block Diagram and Terminal Arrangement 1-6

TI 231-01EN Jan..06, 2017-00

1.5.2	 Terminal Assignments

1
2
3
4
5
6
7
8
9
10
11

Input (+)
N.C.
Input (–)
Prohibited to connect
Prohibited to connect
Prohibited to connect
Output 1 (+)
GND
Output 1 (–)
Power Supply (L+)
Power Supply (N–)

4

1

5

23

78

1011

9

6

Input (+)
Output2 (+)
Input (–)
Prohibited to connect
Output 2 (–)
Prohibited to connect
Output 1 (+)
GND
Output 1 (–)
Power Supply (L+)
Power Supply (N–)

Input (+)
RS-485 B (+)
Input (–)
Prohibited to connect
RS-485 A (–)
RS-485 COM
Output 1 (+)
GND
Output 1 (–)
Power Supply (L+)
Power Supply (N–)

Input (+)
Contact Output 1
Input (–)
Prohibited to connect
Contact Output COM
Contact Output 2
Output 1 (+)
GND
Output 1 (–)
Power Supply (L+)
Power Supply (N–)

Optional Code

A, 6: Analog output T: Contact output
No Optional Code P:Communication

output

Figure 1.5.2 VJX7 Free-Program Computing Unit Terminal Arrangement

		 1. Block Diagram and Terminal Arrangement 1-7

TI 231-01EN Jan..06, 2017-00

1.6	 WXT Free-Program Computing Unit
1.6.1	 Block Diagram

External resistor of 100Ω
(for current input)

Input 1

Handy
Terminal JHT

Power supply

Output 1

+

+

_

Output 2
+

_

L+

N_

GND

_

Isolation circuit

Power supply circuit

Digital
computing

 circuit

Communication line

Output-1
circuit

7

11

12

Output-2
circuit 9

10

14

16

8

Input 2

+

_

3

4

Input 3

+

_

1

2

Input processing circuit

Note: The optional output 2 should be specified by code /D0 and has
the same signal as the output 1.

15

Figure 1.6.1 WXT Free-Program Computing Unit Block Diagram

1.6.2	 Terminal Assignments

1

5

9 10 11 12

16151413

2

6

3

7

4

8

 1 Input 3 (+) 9 Output 2 (+)
 2 Input 3 (–) 10 Output 2 (–)
 3 Input 2 (+) 11 Output 1 (+)
 4 Input 2 (–) 12 Output 1 (–)
 5 Prohibited to connect 13 Prohibited to connect
 6 Prohibited to connect 14 Power Supply (L+)
 7 Input 1 (+) 15 Power Supply (N–)
 8 Input 1 (–) 16 GND (GND)

Figure 1.6.2 WXT Free-Program Computing Unit Terminal Arrangement

1

2

5

3

6

4

7

Blank Page

		 2. Operation of Computation Program 2-1

TI 231-01EN Jan..06, 2017-00

2.	 Operation of Computation Program
The signal conditioner has the computing feature built-in as a set of library commands.
These commands can be combined to create a specific computation function. The
program structure of a computing unit is similar to the one used with calculators with a
programming function. The computation program is expressed in the reverse Polish logic
notation method without parentheses, which makes writing a program very easy.

2.1	 Basic Flow
Figure 2.1.1 shows signal and processing flows in the computing unit.
(1)	 Input Conversion
	 The input signals are automatically converted into internal data by the input converter and

stored in the corresponding input data registers.
(2) Executing User Program
	 After the input conversion, the computing unit calls up a user program, loads various data,

and executes the objective computation. The results are stored in the corresponding data
registers.

(3) Output Conversion
	 The computing unit stores the data in output data registers, automatically converts them into

analog or contact signals, and then outputs them.
	 The steps (1) to (3) described above are periodically executed at computation intervals

(selected from 50ms, 100 ms or 200 ms).

STORE Y1

ch.1

Repeats at
computation
intervals

ch.2

A/D A/D

X1Input register

Input Conversion

User Program

Output Conversion
Output register

X2

Y1

D/A

LOAD X1
LOAD X2
ADD

Figure 2.1.1 Computation Basic Flow

1

2

5

3

6

4

7

		 2. Operation of Computation Program 2-2

TI 231-01EN Jan..06, 2017-00

2.2	 Principle of Computation
This section refers to an example of the addition of two inputs to explain the principle of
computation in the user program and the behavior of registers (see figure 2.2.1).
The computation is carried out in a stack of four registers, called S registers (S1, S2, S3, and S4
registers).
Inputting an S register is performed by LOAD instruction (described as LD) and the input data is
loaded into the S1 register. Consequently the old data previously stored in the S1, S2, and S3
registers are pushed in a sequential order. Note that the old data in the S4 register is lost.
The computation of data is performed by FUNCTION instruction, which has a variety of
computation commands and each command is described by a unique symbol (e.g., ADD [+] or
HSL [High Selector]). After performing computation, only the results remain in the S registers and
the input data for the computation are lost. The emptied S registers pop up the data in turn. The
S4 register holds the same data as stored before the FUNCTION instruction was performed. To
store the results in the output registers, use the STORE command (described as ST). Performing
the ST command does not affect the contents of S registers.

Assume that the data in S1 to S4 registers, before loading input 1, are A, B, C, and D
respectively.
1.	 Loading Input 1 (LDX1)

	 Data in the input register (X1) is loaded into the S1 register. Accordingly each data in the S
registers will be pushed and the old data D in the S4 register will be extruded.

2.	 Loading Input 2 (LDX2)
	 In the same way as input 1, data in the input register (X2) is loaded into the S1 register.

Each data in the S registers will be pushed and the old data C in the S4 register will be
extruded.

3.	 Addition (ADD)
	 The addition of S1 and S2 registers is stored in the S1 register. In consequence, the data in

each register will be popped up and the S4 register holds the same old data.

4.	 Output (STY1)
	 The data in the S1 register is stored in the output register (Y1). This does not change the

contents of the S registers.

LDX1
LDX2
ADD
STY1

STY1

Load inputs

Addition
Store outputs

X1 X2

Y1

Arithmetic
register

LDX1 LDX2 ADD

Addition

X1
A
B
C

X2
X1
A
B

X1+X2
A
B
B

X1+X2

Y1X2X1

S1
S2
S3
S4

 Input/Output register

A
B
B

A
B
C
D

 Lost Lost

1

1

2

3

4

2 3 4

Figure 2.2.1 Two-Input Addition and Behavior of Arithmetic Register

		 2. Operation of Computation Program 2-3

TI 231-01EN Jan..06, 2017-00

2.3	 Program Structure, Capacity, and Interval
2.3.1	 Program Capacity

The number of program steps that the computing unit can execute is 59 (or 40 for WXT).

2.3.2	 Program Load Factor
When the computing unit is connected to a Handy Terminal or VJ77 Parameter Setting Tool, the
load factor is displayed as a percentage, with LOAD A17 (A28 for VJX7 or A12 for WXT). This
can be displayed but not modified.

Load Factor = x100%
Program Running Time
Computation Interval

Design your program so that the load factor is less than 100%. The computing unit does not
operate correctly for load factors greater than 100%. Change the computation interval or modify
the program.

2.3.3	 Computation Interval
The computation interval of the computing unit can be set and indicated using the CYCLE TIME
D47 (D48 for VJX7 or CYCLE TIME B09 for WXT) setting parameter. It can be set to 50 ms(*), 100
ms or 200 ms.
* VJX7 is not available.

2.3.4	 Program Structure
The program begins with step G01 in the computing unit program area, carries out each step in
succession, and ends when the END command or step G59 is executed.
For the WXT, the steps covered by the program area are B20 to B59. Therefore, read “G01 to
G59” noted above as “B20 to B59,” for the program area of WXT. Also read “nn = 01 to 59” as “nn
= 20 to 59,” for the step numbers of jump destination by commands (GOnn as unconditional jump
and GIFnn as conditional jump).

2.3.5	 Input/Output Signals and Registers
The input/output signals are stored in the input/output registers. The user program can store the
data in an input register to the arithmetic registers or output the data in the arithmetic registers to
the output register, by designating the input/output registers.
Table 2.1 below shows the relationship between the input/output signals and respective registers.

Table 2.1 Input/Output Signals and Registers

 Input Register Signal Output Register Signal
 X1 Analog Input 1 Y1 Analog Output 1
 X2 Analog Input 2 Y2 Analog Output 2
 X3 Analog Input 3 DO1 Digital Output 1
 DI1 Digital Input 1 DO2 Digital Output 2

Note: For the WXT, the analog output specified by the optional code /D0 is the same
signal as Y1 (analog output 1).

1

2

5

3

6

4

7

		 2. Operation of Computation Program 2-4

TI 231-01EN Jan..06, 2017-00

2.3.6	 Input/Output Signals and Internal Data
The computing unit deals with many input/output signals. This section refers to the example
of inputs of 1-5 V and 0-100 mV, and outputs of 1-5 V and 4-20 mA, and their respective input/
output ranges are given below in table 2.2, figure 2.3.1, and figure 2.3.2.

Table 2.2 Relationship between Input/Output Signals and Internal Data
 Signal Percentage Notation Corresponding Internal Data
Input 1 to 5 V 0% to 100% 0.000 to 1.000
 0 to 100 mV 0% to 100% 0.000 to 1.000
Output 1 to 5 V 0% to 100% 0.000 to 1.000
 4 to 20 mA 0% to 100% 0.000 to 1.000

1.125
1.000

0.000
–0.125

0.5
2

1 Output
4

5 5.5 For 1-5 V range
For 4-20 mA range2220

For 1-5 V range
For 0-100 mV range

Figure 2.3.1 Input Signals and Internal Data

Figure 2.3.2 Internal Data and Output Signals

–0.125

0.5
–12.5

5.5
112.5

5
100

1
0

0.000

0.500

1.000
1.125

Input

Internal D
ata

Internal D
ata

		 2. Operation of Computation Program 2-5

TI 231-01EN Jan..06, 2017-00

2.3.7	 Internal Computation of Signals
The computing unit expresses its internal digital data in floating decimal format and can perform
internal computations under the following conditions:
Range of numbers that can be processed:
				 -9E + 18 to 9E + 18 (for WXT)
				 -3.4E + 38 to 3.4E + 38 (for VJX7, VJXS, MXS, MXD and MXT)
Number of significant digits:	 4 (for WXT)
				 7 (for VJX7, VJXS, MXS, MXD and MXT)
However, it adopts the fixed decimal format for computations about time measurement.

2.3.8	 Program End
The computing unit offers a programming area ranging from G01 to G59. Basically the program
begins the computation with G01 and ends with G59. If it finds an END command during this
process, then it ends with the command.
For the WXT, the program area is B20 to B59. Therefore, read “G01 to G59” program steps noted
above as “B20 to B59”.

1

2

5

3

6

4

7

Blank Page

		 3. Computational Operations and Applications 3-1

TI 231-01EN Jan..06, 2017-00

3.	 Computational Operations and
Applications

The computing unit is capable of performing various computational functions, including input/
output commands and arithmetical operations. This chapter describes their operation, setting
procedure, and gives program examples.

	 Limit to Number of Command Usage
The computational commands are categorized as follows:

•	 Basic command: Can be used limitlessly in the program.

•	 Dynamic command: Can be used only once every computational interval.

The dynamic command consists of time-related functions or functions that have an internal buffer
for computation. The computing unit performs them only once every computational interval so
that it can measure time and detect the occurrence of a status change after the previous cycle.

	 Buffer Registers (Tn)
The computing unit is provided with buffer registers (Tn) to store the intermediate data of
computations.
The data saved in the Tn register can be used in other steps of the program and holds the same
value until another data is stored in the same register. In other words, the Tn register resets its
data to zero not every computation period but when the power turns off.
The Tn register consists of T1 to T4 and their values can be displayed using the Handy Terminal
or VJ77 Parameter Setting Tool. The on-screen data is shown as a percentage.

	 Fixed Constants (Cn)
The fixed constants (Cn) are loaded into the arithmetic registers for use by the LD command
during computations. The Cn register consists of 59 registers, C01 to C59, and can be set to a
value (percentage) using the Handy Terminal (JHT200) or VJ77 Parameter Setting Tool. Take
care as some commands use specific fixed constant area.
‘H’ can also be used instead of ‘C’ in C01 to C59 to load and display the fixed constants. They
can also be used together in a program. In that case, a total of 59 numbers from 01 to 59 can be
allocated to nn in Cnn (or Hnn) and C01 and H01, for example, refer to the same fixed constant.
For the WXT, 44 fixed constants, C20 to C63, are available. Therefore, read “C01 to C59” noted
above as “C20 to C63.”
For setting C01 to C59, set H01 to H59 of the parameter H: CONST.
For the WXT, set C20 to C63 of the parameter C: ADJUST.

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-2

TI 231-01EN Jan..06, 2017-00

3.1	 Program Commands and Corresponding
Registers

The program commands including input/output and arithmetic operations are shown in table 3.1
below.

Table 3.1 Commands and Symbols

*1: The analog input/output registers (Xn/Yn) and digital output registers (DOn) that do not correspond to actual
hardware I/O ports can be used as buffers and flags, respectively.

*2: The “nn” in LDCnn is 01 to 59 for computing units other than the WXT and 20 to 63 for the WXT.
*3: The “n” in LDDIn is only 1 for the MXD.
*4: The line segment functions FXn use a specific area of the fixed constants Cnn as parameters for the I/O table. If

you want to use a Cnn with any instruction command other than the FXn, select it from a different area.
*5: The same command, among the LAGn, LEDn, VLMn, SQAn, SQBn, HALn and LALn commands, can be used

only once every computational interval. Therefore, more than one command (n commands) is available for each
of these types of commands.

*6: Only one of the DED, VEL, MAV commands can be used in the same program step; they cannot be used only
once every computational interval.

*7: Only available for the MXD.
*8: Not available for the WXT.
*9: Only available for the VJX7 and WXT.
*10: For computing units other than the WXT, the “nn”corresponds to the program step numbers G01 to G59. For the

WXT, the “nn“ corresponds to the program step numbers B20 to B59.

Category Section NumberCommand Command Symbol

2.2

Load

Store

LDXn, LDYn *1
LDCnn, LDTn *2
LDDIn *3
LDDOn *1
STXn, STYn *1
STTn, STDOn *1

3.24
Logical multiplication
Logical addition
Logical negation
Exclusive logical addition

AND
OR
NOT
EOR

3.25

3.26

Trigonometric function
Natural logarithm
Common logarithm
Exponential function
Exponentiation

SIN, COS, TAN, ASIN, ACOS, ATN *9
LN
LOG
EXP
PWR

3.27
3.28
3.29
3.30
3.31
3.34

Unconditional jump
Conditional jump
S register exchange
S register rotation
No operation
End of computation

GOnn (nn = 01 to 59) *10
GIFnn (nn = 01 to 59) *10
CHG
ROT
NOP
END

3.2
3.3
3.7
3.8
3.9
3.10
3.11
3.12

+,-, x, ÷
Square root extraction
Absolute value
Selector
Limiter
Line segment function
Comparison
Signal switching

ADD, SUB, MLT, DIV
SQR
ABS
HSL, LSL
HLM, LLM
FX1, FX2, FX3, FX4 *4
CMP
SW

Input/output

Logical operation

Function operation

Others

Basic operation

Dynamic operation 3.13
3.14

3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.4, 3.5 and 3.6

3.22
3.23

First-order lag
First-order lead
(Differential calculus)
Dead time
Velocity
Velocity limiter
Moving average
Timer
Status change detection
Pulse input counter
Square root extraction with
variable low-cut point
Integrated pulse output counter
Alarm

LAGn (n = 1 to 3) *5
LEDn (n = 1 to 3) *5

DED *6
VEL *6
VLMn (n = 1 and 2) *5
MAV *6
TIM
CCD *7
PIC *7
SQT, SQAn, SQBn (n = 1 to 3) *5

CPO *7
HALn, LALn (n = 1 and 2) *5, *8

		 3. Computational Operations and Applications 3-3

TI 231-01EN Jan..06, 2017-00

The following table summarizes the registers, fixed constants, and program area related to the
input/output commands.

Table 3.2 Input/Output Registers and Program Areas

*1: Can be used for the MXT only.
*2: Can be used if the contact input is custom-ordered for the MXD or MXT.
*3: Can be used as an analog output if the optional analog output is selected for the MXS, VJXS or VJX7. This

register can also be used as a buffer for any other computing unit.
*4: For the MXD, DO1 cannot be used as a buffer but as a digital output.
*5: For computing units other than the MXT, X2 and X3 can be used as buffers.
*6: Only if the contact input is custom-ordered for the MXT. This register can not be used for any other computing

unit.
*7: If the optional contact input is selected for the VJX7, DO1 and DO2 can be used as digital outputs but not as user

flags.
*8: If used as symbols for fixed constants, “C01 to C59” can also be expressed as “H01 to H59.”

Item

Arithmetic register (Sn)

Register, Constant Area and Program Area Symbols
MXD, MXS, MXT, VJXS and VJX7 WXT
S1
S2
S3
S4

S1
S2
S3
S4

Buffer register (Tn) T1
T2
T3
T4

T1
T2
T3
T4

User flag (DOn) DO1 *4, *7
DO2 *7
DO3
DO4

DO1
DO2
DO3
DO4

Fixed constant area (Cnn) C01 *8
•
•
•
C59

C20
•
•
•
C63

Program area (Bnn) G01
•
•
•
G59

B20
•
•
•
B59

Analog input register (Xn) X1
X2 *1, *5
X3 *1, *5

X1
X2
X3

Digital input register (DIn) DI1 *2
DI2 *6
DI3 *6

Analog output register (Yn) Y1
Y2 *3

Y1

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-4

TI 231-01EN Jan..06, 2017-00

3.2	 Arithmetical Operation
[Mnemonic Instruction Code]
+	 :	 ADD	 Addition		 S2 + S1 → S1
–	 :	 SUB	 Subtraction		 S2 – S1 → S1
x	 :	 MLT	 Multiplication		 S2 x S1 → S1
/	 :	 DIV	 Division			 S2 / S1 → S1

[Operation]
The arithmetical operations are performed to data in the S1 and S2 registers and the result is
stored in the S1 register.

[Function Block]
The function block can be expressed as an original equation as shown in figure 3.2.1.

X1+C01
C02

Y1=

Figure 3.2.1 Function Block of Arithmetical Operation

[Program Example]
Figure 3.2.1 can be programmed as shown in the table below.

Step

G01
G02
G03
G04
G05
G06
G07

Program
Statement

LDX1
LDC01
ADD
LDC02
DIV
STY1
Next computation

S1

X1
C01
X1+C01
C02
(X1+C01)/C02
(X1+C01)/C02

S2

X1

X1+C01

Description

Load input 1
Load fixed constant C01
Add
Load fixed constant C02
Divide
Store the result in Y1

S3

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

		 3. Computational Operations and Applications 3-5

TI 231-01EN Jan..06, 2017-00

3.3	 Square Root Extraction without Variable
Low-cut Point

[Mnemonic Instruction Code]
 :	 SQR	 Extraction of square root

[Operation]
This command is performed to data in the S1 register and the result is stored in the S1 register.

X1

Figure 3.3.1 Function of Block Square Root Extraction

[Program Example]
Figure 3.3.1 can be programmed as shown in the table below.

Step Program Statement S1 S2 Description
G01 LDX1 X1 Load input 1
G02 SQR X1 Extract square root
G03 STY1 X1 Store the result in Y1
G04 Next computation

Note:	 For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-6

TI 231-01EN Jan..06, 2017-00

3.4	 Square Root Extraction with Variable Low-
cut Point (1)

[Mnemonic Instruction Code]
 : SQT	 Extraction of square root with variable low-cut point (for inputs not higher than

the low-cut point, the output is the same as input)

[Operation]
This command is performed to data in the S2 register with the S1 register as the low-cut point
and the result is stored in the S1 register. The input/output characteristics are shown in figure
3.4.1.

1.8x1019

If input is not higher
than low-cut point,
output = input.

Low-cut point (variable)

input

1.000

1.000 3.4x10380
0

Output

Hysteresis (Fixed at 0.2 %)

Figure 3.4.1 Input/output Characteristics of Square Root Extraction with Variable Low-cut Point

If the input is not higher than the low-cut point, the output is the same as input. The low-cut point
can be set to a value within 0 to 3.4E + 38.
Note: As this command is a dynamic operation, it can be used only once every computational interval.

[Function Block]
This command can form one function block in combination with arithmetical operations. The
function block can be expressed as shown in figure 3.4.2, which extracts the input X1 not lower
than the set low-cut point and stores the result.

 X1

Figure 3.4.2 Function Block of Square Root Extraction with Variable Low-cut Point

[Program Example]
Figure 3.4.2 can be programmed as shown in the table below.

Step S1 S2 S3 Description

G01 LDX1 X1 Load input 1
G02 LDC01 C01 X1 Load low-cut point
G03 SQT X1 Extract square root with low-cut
G04 STY1 X1 Store the result in Y1
G05

Program
Statement

Next
computation

Note:	 For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59“ as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

		 3. Computational Operations and Applications 3-7

TI 231-01EN Jan..06, 2017-00

3.5	 Square Root Extraction with Variable Low-
cut Point (2)

[Mnemonic Instruction Code]
: SQAn (n = 1 to 3)	Extraction of square root with variable low-cut point (for inputs not higher

than the low-cut point, the output is the same as input)

[Operation]
This command is performed to data in the S2 register with the S1 register as the low-cut point
and the result is stored in the S1 register. The input/output characteristics are shown in figure
3.5.1.

1.8x1019

If input is not higher
than low-cut point,
output = input. input

1.000

1.000 3.4x10380
0

Output

Low-cut point (variable)
Hysteresis (Fixed at 0.2 %)

Figure 3.5.1 Input/output Characteristics of Square Root Extraction with Variable Low-cut Point

If the input is not higher than the low-cut point, the output is the same as input. The low-cut point
can be set to a value within 0 to 3.4E + 38.
Note: As this command is a dynamic operation, it can be used only once every computational interval.

[Function Block]
This command can form one function block in combination with arithmetical operations. The
function block can be expressed as shown in figure 3.5.2, which extracts the input X1 not lower
than the set low-cut point and stores the result.

X1

Figure 3.5.2 Function Block of Square Root Extraction with Variable Low-cut Point

[Program Example]
Figure 3.5.2 can be programmed as shown in the table below.

Step S1 S2 S3 Description

G01 LDX1 X1 Load input 1
G02 LDC01 C01 X1 Load low-cut point
G03 SQA1 X1 Extract square root with low-cut
G04 STY1 X1 Store the result in Y1
G05

Program
Statement

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-8

TI 231-01EN Jan..06, 2017-00

3.6	 Square Root Extraction with Variable Low-
cut Point (3)

[Mnemonic Instruction Code]
 : SQBn (n = 1 to 3)	Extraction of square root with variable low-cut point (for inputs not higher

than the low-cut point, the output is 0%)

[Operation]
This command is performed to data in the S2 register with the S1 register as the low-cut point
and the result is stored in the S1 register. The input/output characteristics are shown in figure
3.6.1.

1.8x1019

If input is not higher
than low-cut point,
output = 0%. input

1.000

1.000 3.4x10380
0

Output

Low-cut point (variable)
Hysteresis (Fixed at 0.2 %)

Figure 3.6.1 Input/output Characteristics of Square Root Extraction with Variable Low-cut Point

If the input is not higher than the low-cut point, the output is 0%. The low-cut point can be set to a
value within 0 to 3.4E + 38.
Note: As this command is a dynamic operation, it can be used only once every computational interval.

[Function Block]
This command can form one function block in combination with arithmetical operations. The
function block can be expressed as shown in figure 3.6.2, which extracts the input X1 not lower
than the set low-cut point and stores the result.

X1

Figure 3.6.2 Function Block of Square Root Extraction with Variable Low-cut Point

[Program Example]
Figure 3.6.2 can be programmed as shown in the table below.

Step S1 S2 S3 Description

G01 LDX1 X1 Load input 1
G02 LDC01 C01 X1 Load low-cut point
G03 SQB1 X1 Extract square root with low-cut
G04 STY1 X1 Store the result in Y1
G05

Program
Statement

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

		 3. Computational Operations and Applications 3-9

TI 231-01EN Jan..06, 2017-00

3.7	 Absolute Value
[Mnemonic Instruction Code]
ABS	 Absolute value

[Operation]
This command is performed to data in the S1 register and the result is stored in the S1 register.

[Function Block]
The function block can be expressed as shown in figure 3.7.1, which calculates an absolute
value from the difference of two inputs and stores the result (for the MXT-A and WXT-A only).

Y1=|X1–X2|

Figure 3.7.1 Function Block of Absolute Value

[Program Example]
Figure 3.7.1 can be programmed as shown in the table below.

Step S1 S2 S3 Description

G01 LDX1 X1 Load input 1
G02 LDX2 X2 X1 Load input 2
G03 SUB X1 – X2 Subtract X2 from X1
G04 ABS |X1–X2| Find the absolute value
G05 STY1 |X1–X2| Store the result in Y1
G06

Program
Statement

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-10

TI 231-01EN Jan..06, 2017-00

3.8	 Selector
[Mnemonic Instruction Code]
HSL	 High selector
LSL	 Low selector

[Operation]
High selector: This command compares the data in S1 and S2 registers, and then stores the
higher one in the S1 register.
Low selector: This command compares the data in S1 and S2 registers, and then stores the
lower one in the S1 register.
Note the data that has not been selected will be lost.

[Function Block]
The function block of the high selector can be expressed as shown in figure 3.8.1, which
compares three inputs.

HSL

Figure 3.8.1 Function Block of High Selector for Three Inputs

[Program Example]
Figure 3.8.1 can be programmed as shown in the table below.

Step S1 S2 S3 Description

G01 LDX1 X1 Load input 1
G02 LDX2 X2 X1 Load input 2
G03 HSL X1 Select higher data (X1 > X2 in this case)
G04 LDX3 X3 X1 Load input 3
G05 HSL X1 Select higher data (X1 > X3 in this case)
G06 STY1 X1 Store the result in Y1
G07

Program
Statement

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

		 3. Computational Operations and Applications 3-11

TI 231-01EN Jan..06, 2017-00

3.9	 Limiter
[Mnemonic Instruction Code]
HLM	 High limiter
LLM	 Low limiter

[Operation]
This command loads the preset ascending limit or descending limit in S1 and input in S2 register,
and stores the result of limiting in the S1 register.

[Function Block]
The function block of the high selector can be expressed as shown in figure 3.9.1, which
performs high limiting and low limiting in succession. The fixed constants enclosed with
parentheses are high/low limits.

HLM(C01)

LLM(C02)

Figure 3.9.1 Function Block of High/Low Limiter

[Program Example]
Figure 3.9.1 can be programmed as shown in the table below.
Notice how the values of arithmetic registers change when X1 < C02 < C01.

Step S1 S2 S3 Description

G01 LDX1 X1 Load input 1
G02 LDC01 C01 X1 Load ascending limit
G03 HLM X1 Upper limit (X1 < C20 in this case)
G04 LDC02 C02 X1 Load descending limit
G05 LLM C02 Lower limit (X1 < C21 in this case)
G06 STY1 C02 Store the result in Y1
G07

Program
Statement

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-12

TI 231-01EN Jan..06, 2017-00

3.10	 Line Segment Function
[Mnemonic Instruction Code]
FX1	 Ten-segment linearizer
FX2	 Arbitrary line segment linearizer (10-segment)
FX3	 Arbitrary line segment linearizer (20-segment)
FX4	 Arbitrary line segment linearizer (any number of segments)

[Operation]
Table 3.10 gives the fixed constant area for the input/output data tables and figures 3.10.1,
3.10.3, 3.10.5 and 3.10.7 show the relationship between inputs and outputs. You can create two
10-segment functions by using the FX1 and FX2 linearizers.
Note: It is not possible to create two functions using the FX3 and FX4 linearizers.

		 3. Computational Operations and Applications 3-13

TI 231-01EN Jan..06, 2017-00

Table 3.10 Fixed Constants as Input/Output Data of Line Segment Linearizer

C01
C02
C03
C04
C05
C06
C07
C08
C09
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
C27
C28
C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10

Fixed constant
H01
H02
H03
H04
H05
H06
H07
H08
H09
H10
H11
H12
H13
H14
H15
H16
H17
H18
H19
H20
H21
H22
H23
H24
H25
H26
H27
H28
H29
H30
H31
H32
H33
H34
H35
H36
H37
H38
H39
H40
H41
H42
H43

Setting address FX1
X0
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X14
X15
X16
X17
X18
X19
X20
Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10
Y11
Y12
Y13
Y14
Y15
Y16
Y17
Y18
Y19
Y20

X0
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X14
X15
X16
X17
X18
X19
X20
Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10
Y11
Y12
Y13
Y14
Y15
Y16
Y17
Y18
Y19
Y20

FX3
X0
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X14
X15
X16
X17
X18
X19
X20
Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10
Y11
Y12
Y13
Y14
Y15
Y16
Y17
Y18
Y19
Y20

Number of
segments

FX4

X0
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10

X0
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10

FX2 Fixed constant
(Setting address) FX1 FX3FX2

MXD,MXS,MXT,VJXS,VJX7 WXT

C20
C21
C22
C23
C24
C25
C26
C27
C28
C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41
C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62

Xn: Input register Yn: Output register

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-14

TI 231-01EN Jan..06, 2017-00

FX1

The input data (X0 to X10) for the FX1 linearizer are 0 to 100% in 10% increments.
Output setting conditions:	 –6% ≤ C01 to C11 ≤ 106%

·	 When the input is below 0%, the computing unit does not limit output, which is calculated
using the following statement:

	 C01 + (C02 – C01) /10 x (Input [%])

·	 When the input is above 100%, the computing unit calculates the output using the following
statement:

	 C11 + (C11 – C10) /10 x (Input [%] – 100 [%])

0 10 20
Input

90 100(%)

C10
C11
C03
C02
C01

Output

Figure 3.10.1 Relationship between Input and Output of FX1 Ten-Segment Linearizer

[Function Block]
The function block of the FX1 linearizer can be expressed as shown in figure 3.10.2.

FX1

Figure 3.10.2 Function Block of FX1 Linearizer

[Program Example]
Figure 3.10.2 can be programmed as shown in the table below.

Step S1 S2 Description

G01 LDX1 X1 Load input 1
G02 FX1 Ten-segment linearizer

G03 STY1 Store the result in Y1

G04

Program
Statement

Output
Breakpoints
Output
Breakpoints

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

		 3. Computational Operations and Applications 3-15

TI 231-01EN Jan..06, 2017-00

FX2

Setting conditions:
For input :	 –6% ≤ C12 to C22 ≤ 106%
		 C12 < C13 < C14 < C15 < C16< C17 < C18 < C19 < C20 < C21 < C22
For output : 	 –6% ≤ C23 to C33 ≤ 106%

·	 When the input ≤ C12, the computing unit outputs the C23, and when the input ≥ C22, it
outputs the C33.

C12 C13 C14
Input

C21 C22(%)

C32
C33
C25
C24
C23

Output

Figure 3.10.3 Relationship between Input and Output of FX2 Arbitrary Ten-Segment Linearizer

[Function Block]
The function block of the FX2 linearizer can be expressed as shown in figure 3.10.4.

FX2

Figure 3.10.4 Function Block of FX2 Linearizer

[Program Example]
Figure 3.10.4 can be programmed as shown in the table below.

Step S1 S2 Description

G01 LDX1 X1 Load input 1
G02 FX2

G03 STY1 Store the result in Y1

G04

Program
Statement

Output
Breakpoints
Output
Breakpoints

Next
computation

Arbitrary ten-segment
linearizer

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-16

TI 231-01EN Jan..06, 2017-00

FX3

Setting conditions:
For input :	 –6% ≤ C01 to C21 ≤ 106%
		 C01 < C02 < C03 < C04 < C05 < C06 < C07 < C08 < C09 < C10 < C11
		 < C12 < C13 < C14 < C15 < C16 < C17 < C18 < C19 < C20 < C21
For output :	 –6% ≤ C22 to C42 ≤ 106%

·	 When the input ≤ C01, the computing unit outputs the C22, and when the input ≥ C21, it
outputs the C42.

C01 C02C03 C20 C21 (%)

C41
C42
C24
C23
C22

Output

Figure 3.10.5 Relationship between Input and Output of FX3 Arbitrary Twenty-Segment Linearizer

[Function Block]
The function block of the FX3 linearizer can be expressed as shown in figure 3.10.6.

FX3

Figure 3.10.6 Function Block of FX3 Linearizer

[Program Example]
Figure 3.10.6 can be programmed as shown in the table below.

Step S1 S2 Description

G01 LDX1 X1 Load input 1
G02 FX3

G03 STY1 Store the result in Y1

G04

Program
Statement

Output
Breakpoints
Output
Breakpoints

Next
computation

Arbitrary twenty-segment
linearizer

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

		 3. Computational Operations and Applications 3-17

TI 231-01EN Jan..06, 2017-00

FX4

Setting conditions:
For number of line segments:	 Set the number of line segments in C43.
				 (Set it at % value. The number of line segments 1 to 20
				 corresponds to 100 to 2000%.)
For input :	 –6% ≤ C01 to C21 ≤ 106%
		 C01 < C02 < C03 < C04 < C05 < C06 < C07 < C08 < C09 < C10 < C11
		 < C12 < C13 < C14 < C15 < C16 < C17 < C18 < C19 < C20 < C21
For output :	 –6% ≤ C22 to C42 ≤ 106%
Since the FX4 linearizer operates based on the desired number of line segments set in C43,
there is no need to set from the C01 to C42 fixed constants as with FX3. For the input data table,
set as many fixed constants as necessary, beginning with C01 as in C01, C02, C03, . . . Likewise,
set as many fixed constants as necessary for the output data table, beginning with C22 as in
C22, C23, C24, . . . Setting more data items than necessary results in the extra data items being
nullified.
For example, if you specify the number of line segments as 5, set the C01 to C06 and C22 to C27
fixed constants in the data table. Data values set in C07 to C21 and C28 to C42 are ignored.

C01 C02C03 C20 C21 (%)

C41
C42
C24
C23
C22

Output

Figure 3.10.7 Relationship between Input and Output of FX4 Arbitrary Twenty (Max.)-Segment Linearizer

[Function Block]
The function block of the FX4 linearizer can be expressed as shown in figure 3.10.8.

FX4

Figure 3.10.8 Function Block of FX4 Linearizer

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-18

TI 231-01EN Jan..06, 2017-00

[Program Example]
Figure 3.10.8 can be programmed as shown in the table below.

Step S1 S2 Description

G01 LDX1 X1 Load input 1
G02 FX4

G03 STY1 Store the result in Y1

G04

Program
Statement

Output
Breakpoints
Output
Breakpoints

Next
computation

Arbitrary twenty-segment
linearizer

Note: For the WXT, this line-segment function cannot be used.

		 3. Computational Operations and Applications 3-19

TI 231-01EN Jan..06, 2017-00

3.11	 Comparison
[Mnemonic Instruction Code]
CMP	 Comparison

[Operation]
This command compares data in S1 and S2 registers, and stores the value in the S1 register in
the following manner:

·	 If S1 ≤ S2, the value is 1.000.

·	 If S1 > S2, the value is 0.000.

The old value in the S1 register will be lost but the data in the S2 register remains.

[Function Block]
The function block can be expressed as shown in figure 3.11.1, which performs a comparison
between two inputs and then outputs 1.000 (when X1 ≥ X2) or 0.000 (when X1 < X2).

CMP(X1≥X2)

X1 X2

Figure 3.11.1 Function Block of Comparison

[Program Example]
Figure 3.11.1 can be programmed as shown in the table below.

Step S1 S2 S3 Description

G01 LDX1 X1
G02 LDX2 X2 X1
G03 CMP 0 or 1 X1 Compare X1 and X2
G04 STY1 0 or 1 X1 Store the result in Y1
G05

Program
Statement

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-20

TI 231-01EN Jan..06, 2017-00

3.12	 Signal Switching
[Mnemonic Instruction Code]
SW	 Signal Switching

[Operation]
This command loads data in the S2 and S3 registers, and the switching signal in the S1 register:

·	 If S1 < 0.5, the data in S3 register is stored in the S1 register.

·	 If S1 ≥ 0.5, the data in S2 register is stored in the S1 register.

[Function Block]
The function block can be expressed as shown in figure 3.12.1, which switches two inputs using
the C01 as a switching signal.

X2

C01

X1

O
N

O
F
F

Figure 3.12.1 Function Block of Signal Switching

[Program Example]
Figure 3.12.1 can be programmed as shown in the table below.

Step S1 S2 S3 Description

G01 LDX1 X1
G02 LDX2 X2 X1
G03 LDC01 C01 X2 X1
G04 SW X1 or X2 X1 if C01 < 0.5 or X2 if C01 0.5
G05 STY1 X1 or X2
G06

Program
Statement

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

		 3. Computational Operations and Applications 3-21

TI 231-01EN Jan..06, 2017-00

3.13	 First-order Lag Computation
[Mnemonic Instruction Code]
LAGn	 First-order Lag Computation (n = 1 to 3)

1
1+TS

Y= X

[Operation]
This command loads the input and time constant in the S2 and S1 registers respectively,
performs the computation, and stores the result in the S1 register.

·	 Setting range of time constant (minimum unit is 0.1 second)

The time constant for a first-order lag computation can be set up to 799.9 seconds where 0.000-
1.000 (0.0-100.0%) of internal data corresponds to 0-100 seconds. (The internal value setting for
the maximum time constant is 7.999.)
Note: As this command is a dynamic operation, it can be used only once every computational interval.

[Function Block]
The function block can be expressed as shown in figure 3.13.1.

LAG1(C01)

Figure 3.13.1 Function Block of First-order Lag Computation

[Program Example]
Figure 3.13.1 can be programmed as shown in the table below.

Step S1 S2 S3 Description

G01 LDX1 X1 Load input 1
G02 LDC01 C01 X1 Load time constant
G03 LAG1 (1–e–t/C01)xX1 First-order lag computation
G04 STY1 (1–e–t/C01)xX1 Store the result in Y1
G05

Program
Statement

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-22

TI 231-01EN Jan..06, 2017-00

3.14	 First-order Lead (Differential Calculus)
[Mnemonic Instruction Code]
LEDn	 First-order Lead (Differential Calculus) (n = 1 to 3)

TDS
1+TDS

Y= X

[Operation]
This command loads the input and time constant in the S2 and S1 registers respectively,
performs the computation, and stores the result in the S1 register.

·	 Setting range of time constant (minimum unit is 0.1 second)

	 As with a first-order lag computation, the time constant for a differential computation can be
set up to 799.9 seconds where 0.000-1.000 (0.0-100.0%) of internal data corresponds to
0-100 seconds. (The internal value setting for the maximum time constant is 7.999.)

· 	 Derivative gain

	 The derivative gain is 1.0 and you can multiply the result of first-order lead (differential)
computation by a constant as necessary.

Note: As this command is a dynamic operation, it can be used only once every computational interval.

[Function Block]
The function block of the first-order lead (differential) computation with derivative gain can be
expressed as shown in figure 3.14.1.

Y1=LED1(C01)xC02

Figure 3.14.1 Function Block of Differential Calculus

[Program Example]
Figure 3.14.1 can be programmed as shown in the table below.

Step S1 S2 S3 Description

G01 LDX1 X1 Load input 1
G02 LDC01 C01 X1 Load time constant
G03 LED1 e–t/C01x∆X1 First-order Lead
 (Differential calculus)
G04 LDC02 C02 e–t/C01x∆X1 Load derivative gain
G05 MLT C02xe–t/C01x∆X1 Multiply by gain
G06 STY1 C02xe–t/C01x∆X1 Store the result in Y1
G07 Next

computation

Program
Statement

∆X1: A variation of input 1
Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

		 3. Computational Operations and Applications 3-23

TI 231-01EN Jan..06, 2017-00

3.15	 Dead Time Computation
[Mnemonic Instruction Code]
DED	 Dead Time Computation
Y = e–LS x X where L is dead time
This command cannot be used together with the VEL and MAV commands in the same program
step.

[Operation]
This command loads the input and dead time in the S2 and S1 registers respectively, performs
the computation, and stores the result in the S1 register.

·	 Setting range of dead time

	 The dead time can be set up to 2,047,000 seconds where 0.000-1.000 (0.0-100.0%) of
internal data corresponds to 0-1000 seconds. (The internal value setting for the maximum
dead time is 2047.0.)

·	 Principle

	 Figure 3.15.1 explains the principle of operation. The dead time computation stores the
input in its dedicated buffer registers every sampling. The buffer register consists of 40
registers and the input moves to the right in the registers.

	 When the computing units turn on, the last input (A) is stored in all of the 40 buffer registers
as an initial value. After dead time setting/40 seconds, the computing unit loads the next
input (B). At the same time, all the data in buffer registers move to the right and data in
the register 40 is output. Namely, reading an input, data shift, and outputting the 40th
data are performed every dead time setting/40 seconds. Furthermore, the computing unit
interpolates the outputs to achieve their gradual changes. However, the minimum sampling
time is the same as the computation interval, which means if you set the dead time too short
not all of the buffer registers may be used for computation. For instance, if the dead time is
one second and the computation interval is 100 ms, only 10 buffer registers will be used.

T AT S R D C B A
Input Output

After Dead Time passes

B AB A A A A A A
Input Output

After Dead Time/40 seconds

A AA A A A A A A
Input Output

Set initial value

1 2 3 37 38 39 40
Input Output

Buffer registers (40)

Figure 3.15.1 Operational Principle of Dead Time Computation

Note: As this command is a dynamic operation, it can be used only once every computational interval.

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-24

TI 231-01EN Jan..06, 2017-00

Dead time

Power-on

Output of dead time
computation

Input

Time

Figure 3.15.2 Input/output Characteristics of Dead Time Computation

[Function Block]
The function block of the differential computation with derivative gain can be expressed as shown
in figure 3.15.3.

Y1=DED(C01)

Figure 3.15.3 Function Block of Dead Time Computation

[Program Example]
Figure 3.15.3 can be programmed as shown in the table below.

Step S1 S2 S3 Description

G01 LDX1 X1 Load input 1
G02 LDC01 C01 X1 Load dead time
G03 DED X1t–C01 Calculates value of
 X1 before C01 seconds
G04 STY1 X1t–C01 Store the result in Y1
G05

Program
Statement

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

		 3. Computational Operations and Applications 3-25

TI 231-01EN Jan..06, 2017-00

3.16	 Velocity Computation
[Mnemonic Instruction Code]
VEL	 Velocity Computation
This command cannot be used together with the DED and MAV commands in the same program
step.

[Operation]
This command uses the dead time computation and subtracts the input value sampled at a point
of time a specified period before the current time from the sampled current input value. This
period is set as the ‘dead time.’

The velocity computation is performed according to the following equation:
Y1t = X1t – X1t – C01

where	 Y1t : Output of velocity computation;
	 X1t : Current input value
	 X1t – C01 : Input value C01 seconds before

·	 Setting range of dead time

	 As with the dead time computation, the dead time can be set up to 2,047,000 seconds
where 0.000-1.000 (0.0-100.0%) of internal data corresponds to 0-1000 seconds. (The
internal value setting for the maximum dead time is 2047.)

Dead time
Power-on

Output of dead time computation

Output of velocity computation

Input

Time

Figure 3.16.1 Input/output Characteristics of Velocity Computation

As in figure 3.16.1, the computation results can be a negative value. So you need to add certain
bias or perform the absolute value computation to the output of velocity computation.
Note: As this command is a dynamic operation, it can be used only once every computational interval.

[Function Block]
The function block of the differential computation can be expressed as shown in figure 3.16.2.

Y1=VEL(C01)

Figure 3.16.2 Function Block of Velocity Computation

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-26

TI 231-01EN Jan..06, 2017-00

[Program Example]
Figure 3.16.2 can be programmed as shown in the table below.

Step S1 S2 S3 Description

G01 LDX1 X1 Load input
G02 LDC01 C01 X1 Load velocity computation time
G03 VEL X1t–X1t–C01 Calculates velocity
G04 STY1 X1t–X1t–C01 Store the result in Y1
G05

Program
Statement

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

		 3. Computational Operations and Applications 3-27

TI 231-01EN Jan..06, 2017-00

3.17	 Velocity Limiter
[Mnemonic Instruction Code]
VLMn	 Velocity Limiter (n = 1 or 2)

[Operation]
This command loads the input, ascending velocity limit, and descending velocity limit in the S3,
S2, and S1 registers respectively, performs the computation, and stores the result in the S1
register.

·	 Setting range of velocity limit:

	 0.1% to 699.9% per minute where 0.001-1.000 (0.1-100.0%) of internal data corresponds to
0.0-100.0% per minute (If the velocity limiter is set to less than 0.1 %, this function operates
as 0.1 %.)
(the internal value setting for the maximum and minimum velocity limits are 6.999 and
0.001, respectively) .

·	 Principle

	 Figure 3.17.1 explains the principle of operation. Setting the limit at 700.0%/minute (the
internal value 7.000) or above does not limit the input as is (i.e., works as an open limit
function).

100%
Input

Output

0%

C02

C01

Time

1/C01 minutes 1/C02 minutes
Figure 3.17.1 Input/output Characteristics of Velocity Limiter

[Function Block]
The function block can be expressed as shown in figure 3.17.2.

Y1=VLM(C01,C02)

Figure 3.17.2 Function Block of Velocity Limiter

Note: As this command is a dynamic operation, it can be used only once every computational interval.

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-28

TI 231-01EN Jan..06, 2017-00

[Program Example]
Figure 3.17.2 can be programmed as shown in the table below.

Step S1 S2 S3 Description

G01 LDX1 X1 Load input 1
G02 LDC01 C01 X1 Load ascending velocity limit
G03 LDC02 C02 C01 X1 Load descending velocity limit
G04 VLM1 X1 after limit Velocity limit computation
G05 STY1 X1 after limit Store the result in Y1
G06

Program
Statement

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

		 3. Computational Operations and Applications 3-29

TI 231-01EN Jan..06, 2017-00

3.18	 Moving Average Computation
[Mnemonic Instruction Code]
MAV	 Moving Average Computation
This command cannot be used together with the DED and VEL commands in the same program
step.

[Operation]
This command is application of the dead time computation, totals the 40 inputs that have been
sampled since going back to the preset computation time from the last sampling, and calculates
the average.

·	 Setting range of computation time (minimum unit is 1 second)

As with the dead time computation, the computation time can be set up to 2,047,000 seconds
where 0.000-1.000 (0.0-100.0%) of internal data corresponds to 0-1000 seconds. (The internal
value setting for the maximum computation time is 2047.)

However, the minimum sampling time is the same as the computation interval, which means the
minimum computation time that can use the 40 sampling buffer registers to their full effectiveness
is four seconds if the computation interval is 100 ms. Therefore, if you set the computation time
too short, not all of buffer registers may be used for computation. For instance, if the computation
time is one second and the computation interval is 100 ms, only 10 buffer registers will be used.

X40 X39 X38 X37X36

X35

X6

X5
X4

X3

X2 X1

Computation time

Time
Moving average=(X1+X2+X3·······+X40)/40

Figure 3.18.1 Input/output Characteristics of Moving Average Computation

Note: As this command is a dynamic operation, it can be used only once every computational interval.

[Function Block]
The function block of the moving average computation can be expressed as shown in figure
3.18.2.

Y1=MAV(C01)

Figure 3.18.2 Function Block of Moving Average Computation

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-30

TI 231-01EN Jan..06, 2017-00

[Program Example]
Figure 3.18.2 can be programmed as shown in the table below.

Step S1 S2 S3 Description

G01 LDX1 X1 Load input
G02 LDC01 C01 X1 Load computation time
G03 MAV Moving Average Calculates moving average
G04 STY1 Moving Average Store the result in Y1
G05

Program
Statement

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

		 3. Computational Operations and Applications 3-31

TI 231-01EN Jan..06, 2017-00

3.19	 Timer
[Mnemonic Instruction Code]
TIM	 Timer

[Operation]
This command loads value for timer start/stop before computation and the elapsed time after
computation in the S1 register. The following table summarizes the behavior of the S1 register:

Before Computation After Computation Description
S1 < 0.5 0.000 Timer reset
S1 0.5 Elapsed time At start of timer or while running

Figure 3.19.1 shows the timer operation. When the timer start signal is off (less than 0.5), the
result of TIM computation is 0.000. When the signal is turned on (0.5 or more), the timer starts
counting time and the TIM result increases as time elapses. If the count reaches 4,095,999
seconds, it is reset to zero (the internal value 1.000 corresponds to 1000 seconds so that the
timer can count up to 4,095,999 seconds).

4095.999

0.0

ON (0.5)Timer start signal
OFF (< 0.5)

t seconds

4,095,999 seconds

Timer result

Figure 3.19.1 Timer Operation

Note: As this command is a dynamic operation, it can be used only once every computational interval.

[Function Block]
The function block can be expressed as shown in figure 3.19.2, which uses the X1 register as the
timer start signal.

TIM

X2

Figure 3.19.2 Function Block of Timer

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-32

TI 231-01EN Jan..06, 2017-00

[Program Example]
Figure 3.19.2 can be programmed as shown in the table below.

Step Program Statement S1 S2 Description
G01 LDX2 X2 Load timer start signal
G02 TIM Time Elapsed time
G03 STY1 Time
G04 Next computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

		 3. Computational Operations and Applications 3-33

TI 231-01EN Jan..06, 2017-00

3.20	 Status Change Detection (for MXD-A Only)
[Mnemonic Instruction Code]
CCD	 Status Change Detection

[Operation]
This command returns 1 as output if the input of S1 register changes 0 to 1 at the last
computation interval. If no change takes place (e.g., the input holds 1 or 0) or the input changes 1
to 0, it returns 0. Figure 3.20.1 explains the input/output operation when checking the input status
change. The status output is 0 at cold start.

DI1 1

0

DO1 1

0

Computing interval

One-shot output
Figure 3.20.1 Input/output Operation of Status Change Detection

Note: As this command is a dynamic operation, it can be used only once every computational interval.

[Function Block]
The function block can be expressed as shown in figure 3.20.2.

CCD

Figure 3.20.2 Function Block of Status Change Detection

[Program Example]
Figure 3.20.2 can be programmed as shown in the table below.

Step S1 S2 S3 Description

G01 LDDI1 DI1 Load contact input
G02 CCD 0 or 1 Check Status Change
G03 STDO1 0 or 1 Output the result to DO1
G04

Program
Statement

Next
computation

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-34

TI 231-01EN Jan..06, 2017-00

3.21	 Pulse Input Counter (for MXD-A Only)
[Mnemonic Instruction Code]
PIC	 Pulse Input Counter

[Operation]
This command increases the counter as a pulse when the data in S2 register changes 0 to 1
while the content of S1 register is ON. For both the ON and OFF time, the computing unit only
counts a pulse twice the control interval or longer. The counter can be increased up to 30,000
and if it exceeds 30,000 it limits the count and holds 30,000. The PIC command outputs analog
signal of 0 to 30,000.
The internal value 1.000 corresponds to 1000 pulses. Furthermore, in the event of cold start, the
computing unit resets the counter to zero and restarts counting from the next interval.

•	 Setting input conditions

	 For S2 register: Input

	 For S1 register: Start/Stop signal; starts or continues counting while the S1 register is ON (≥
0.5), resets the counter when it is OFF (< 0.5).

•	 Output

	 S1 register: Counter output (internal value 0 to 1.00 corresponding to 0 to 1000 pulses)

Note: As this command is a dynamic operation, it can be used only once every computational interval.

[Function Block]
The function block can be expressed as shown in figure 3.21.1.

PIC

DI1 X1

Figure 3.21.1 Function Block of Pulse Input Counter

[Program Example]
Figure 3.21.1 can be programmed as shown in the table below.

Step S1 S2 S3 Description

G01 LDDI1 DI1 Load pulse input
G02 LDX1 X1 DI1 Check start/reset status
G03 PIC Computation result Count pulse
G04 STY1 Computation result Store the result in Y1
G05

Program
Statement

Next
computation

		 3. Computational Operations and Applications 3-35

TI 231-01EN Jan..06, 2017-00

3.22	 Integrated Pulse Output Counter (for MXD
Only)

[Mnemonic Instruction Code]
CPO	 Integrated Pulse Output
Note that this command uses the DO1 register, therefor the contact output is unavailable if the
command is executed. This is because the DO1 cannot be used as a contact output.

[Operation]
This command loads the input and integrating ratio in the S2 and S1 registers, respectively. The
S2 register has been made capable of storing data within the range of 0.000 to 10.000, because
the data may exceed 1.0 as a result of temperature and pressure compensation. The S1 register
can store the integrating ratio of 0.01 to 18.000. Note that the maximum output pulse is 5 pulses/
second (for both computation intervals of 0.1 and 0.2 second).
The relationship between the integrating ratio (S1) and input (S2), and the pulse output is as
follows:

For the input of 100% (S2):

The integrating ratio of 0 to 1.0 corresponds to 0 to 1000 pulses/hour, namely:

Integrated pulse output = integrating ratio (S1) x input (S2) x 1000 [pulse/hour]

For example, if the integrating ratio (S1) = 0.500 and the input value (S2) = 0.750, then the
integrated pulse = 0.5 x 0.75 x 1000 = 375 pulses/hour.

In addition, pulse outputs are ON-pulse of 100 ±1 ms long.
Note 1:	 A potential problem exists if the integrating ratio is too small, because the integrated value of the ratio and input also

becomes too small to calculate or the results include integration errors. In other words, the integrating ratio of 0.01 cannot
accommodate inputs no more than 2.4%.

Note 2:	 As this command is a dynamic operation, it can be used only once every computational interval.

[Function Block]
The function block can be expressed as shown in figure 3.22.1, where C01 is the integrating
ratio.

CPO(C01)

X1

Figure 3.22.1 Function Block of Integrated Pulse Output Counter

[Program Example]
Figure 3.22.1 can be programmed as shown in the table below.

Step S1 S2 S3 Description

G01 LDX1 X1 Load input
G02 LDC01 C01 X1 Load integrating ratio
G03 CPO X1 Output the result to DO1
G04

Program
Statement

Next
computation

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-36

TI 231-01EN Jan..06, 2017-00

3.23	 Alarm
[Mnemonic Instruction Code]
HALn	 High alarm (n = 1 or 2)
LALn	 Low alarm (n = 1 or 2)

[Operation]
Stores the input value in the S3 register, the alarm setpoint in the S2 register, and the hysteresis
width in the S1 register. A positive value greater than 0 can be stored in the S1 register.
After computation, the computing unit stores “1” in the S1 register if the input value is equal to or
greater than the setpoint (abnormal), or stores “0” if the input value is smaller than the setpoint.
The contact outputs of the VJX7 and MXD are not interlocked with the alarm discussed in this
section.

Value
Input value (S3)

High-limit alarm
setpoint (S2)

Low-limit alarm
setpoint (S2)

Hysteresis width (S1)

Alarm ON
(S1 = 1.0) Alarm

OFF
(S1 = 0.0)

Hysteresis width (S1)

Time

Figure 3.23.1 Input/Output Characteristics of Alarm Operation

[Function Block]
The function block can be expressed as shown in figure 3.23.2, where C01 is the alarm setpoint
and C02 is the hysteresis width.

HAL(C01,C02)

X1

Figure 3.23.2 Function Block of Alarm

		 3. Computational Operations and Applications 3-37

TI 231-01EN Jan..06, 2017-00

[Program Example]
Figure 3.23.2 can be programmed as shown in the table below.

Program
Statement

Step S1 S2 S3 Description

G01 LDX1 X1 Load input 1
G02 LDC01 C01 X1 Load alarm setpoint
G03 LDC02 C02 C01 X1 Load hysteresis width
G04 HAL1 0/1 X1 High alarm
G05 STDO1 0/1 X1 Store the result in DO1
G06 Next

computation
Note: For the WXT, this alarm function cannot be used.

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-38

TI 231-01EN Jan..06, 2017-00

3.24	 Logical Operation
[Mnemonic Instruction Code]

 : AND
 : OR
 : NOT
 : EOR

S2 S1
S2 S1
S1
S2 S1

→S1
→S1
→S1
→S1

[Operation]
This command deals with the S1 and S2 registers. The result is stored in the S1 register as 0
or 1. The EOR operation returns 0 when the S1 and S2 contain the same value. The data in
registers is considered to be 1 if it is 0.5 or more, and 0 if it is not.

[AND]

S1
0
0
1
1

S2
0
1
0
1

S1
0
0
0
1

[OR]

S1
0
0
1
1

S2
0
1
0
1

S1
0
1
1
1

[NOT]

S1
0
1

S1
1
0

[EOR]

S1
0
0
1
1

S2
0
1
0
1

S1
0
1
1
0

Register Values before and after Operations

		 3. Computational Operations and Applications 3-39

TI 231-01EN Jan..06, 2017-00

3.25	 Trigonometric Function (for VJX7 and WXT
Only)

[Mnemonic Instruction Code]
SIN	 Sine
COS	 Cosine
TAN	 Tangent
ASIN	 Arcsine (SIN–1)
ACOS	 Arccosine (COS–1)
ATAN	 Arctangent (TAN–1)

[Operation]
The trigonometric function commands deal with the S1 register. The result is stored back in the
S1 register . As with angle of trigonometric function,0-1.000 of internal data corresponds to 0-360
degree (0 to 2 π radian).

0.00
0
0

1.5

1

0.5

0

–0.5

–1

–1.5
0.250

90
π/2

0.750
270
3π/2

0.500
180
π

 Input

Output

1.000
360
2π

Figure 3.25.1 Input/output Characteristics of Sine Calculation

0.00
0
0

1.5

1

0.5

0

–0.5

–1

–1.5
0.250

90
π/2

0.750
270
3π/2

0.500
180
π

Output

1.000
360
2π

Input

Figure 3.25.2 Input/output Characteristics of Cosine Calculation

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-40

TI 231-01EN Jan..06, 2017-00

 Input

0.00
0
0

50

40

30

20

10

0

–20

–10

–30

–40

–50
0.250

90
π/2

0.750
270
3π/2

0.500
180
π

1.000
360
2π

Output

Figure 3.25.3 Input/output Characteristics of Tangent Calculation

Output

–1 –0.5 0 0.5 1

0.5π

π/2

–π/2

–π

0

180

90

–90

–180

0

0.4

0.3

0.2

0.1

0

–0.2

–0.1

–0.3

–0.4

–0.5

Input

Figure 3.25.4 Input/output Characteristics of Arcsine Calculation

Input

Output

–1 –0.5 0 0.5 1

0.5π

π/2

–π/2

–π

0

180

90

–90

–180

0

0.4

0.3

0.2

0.1

0

–0.2

–0.1

–0.3

–0.4

–0.5

Figure 3.25.5 Input/output Characteristics of Arccosine Calculation

		 3. Computational Operations and Applications 3-41

TI 231-01EN Jan..06, 2017-00

Input

Output

–1 –0.5 0 0.5 1

0.15
π/4

0

45

–π/4 –45

0

0.1

0.05

0

–0.1

–0.05

–0.15

Figure 3.25.6 Input/output Characteristics of Arctangent Calculation

[Function Block]
A function block example of sine function can be expressed as shown in figure 3.24.7.

SIN

Figure 3.25.7 Function Block of Sine Calculation

[Program Example]
Figure 3.24.7 can be programmed as shown in the table below.

Step S1 S2 Description

G01 LDX1 X1 Load input 1
G02 SIN SIN (X1) Sine calculation
G03 STY1 SIN (X1) Store the result to Y1
G04

Program
Statement

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-42

TI 231-01EN Jan..06, 2017-00

3.26	 Other Functions
[Mnemonic Instruction Code]
LN	 Natural Logarithm
LOG	 Common Logarithm
EXP	 Exponential Function
PWR	 Power Function

[Operation]
All functions except PWR function are performed to the S1 register and the result is stored in the
S1 register. The PWR function calculates “(S2)(S1)” and stores the result in the S1 register. The
behavior of registers when the PWR function is executed is shown in figure 3.26.1 below.

S1

S2

S3

S4

A

B

C

D

Arithmetic register

BA

C

D

D

PWR

Figure 3.26.1 Behavior of S Registers When PWR Function Is Executed

[Program Example a]
The PWR function can be programmed as follows.

Step S1 S2 Description

G01 LDX1 X1 Load input 1
G02 LDC01 C01 X1 C01 (exponent)
G03 PWR X1C01 Exponential calculation
G04 STY1 X1C01 Store the result to Y1
G05

Program
Statement

Next
computation

[Function Block]
A function block example of the LOG function can be expressed as shown in figure 3.26.2.

LOG

Figure 3.26.2 Function Block of LOG Function

		 3. Computational Operations and Applications 3-43

TI 231-01EN Jan..06, 2017-00

[Program Example b]
Figure 3.26.2 can be programmed as shown in the table below.

Step S1 S2 Description

G01 LDX1 X1 Load input 1
G02 LOG LOG (X1) LOG calculation
G03 STY1 LOG (X1) Store the result to Y1
G04

Program
Statemen

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-44

TI 231-01EN Jan..06, 2017-00

3.27	 Unconditional Jump
[Mnemonic Instruction Code]
GOw w	Unconditional Jump; where w w: 01 to 59 (20 to 59 for the WXT)
Unconditional jump is used to branch a program flow.

[Operation]
With this command, the program execution jumps to the step Gnn. The command does not
change the arithmetic registers.

[Program Example]

Step Program Statement S1 S2 S3 Description
G01 GO04 A B C
G02
G03
G04 Next computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

3.28	 Conditional Jump
[Mnemonic Instruction Code]
GIFnn	 Conditional Jump; where nn: 01 to 59 (20 to 59 for the WXT)

[Operation]
The program execution jumps to the step Gnn if the content of S1 register is 1. If the S1 register
contains 0, then the program execution continues to the step next to the GIF command. After this
command, the last data in S1 register will be lost and the data in S2 to S4 registers are pushed
up to the S1 to S3 registers, respectively. The S4 register holds the old value.
The data in S1 register is considered to be 1 if it is 0.5 or more, and 0 if it is not.

[Program Example]

S1
1

0

Step Program Statement S1 S2 S3 Description
G01 LDDI1 DI1 A B
G02 GIF06 A B C
G03 Next computation
G04
G05
G06 Next computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

		 3. Computational Operations and Applications 3-45

TI 231-01EN Jan..06, 2017-00

3.29 	 S Register Exchange
[Mnemonic Instruction Code]
CHG	 S Register Exchange

[Operation]
This command exchanges the data between S1 and S2 registers. The other registers, S3 and
S4, still hold previous data. Figure 3.29.1 given below shows the behavior of registers when the
CHG command is executed.

S1
S2
S3
S4

A
B
C
D

Arithmetic register

CHG
B
A
C
D

Figure 3.29.1 Behavior of S Registers When CHG Command Is Executed

[Function Block]
The function block can be expressed as shown in figure 3.29.2.

CHG

Figure 3.29.2 Function Block of S Register Exchange

[Program Example]
Exchanging the data between S1 and S2 registers can be programmed as follows.

Step S1 S2 S3 Description

G01 LDX1 X1 Load input 1
G02 LDX2 X2 X1 Load input 2
G03 LDX3 X3 X2 X1 Load input 3
G04 CHG X2 X3 X1 Exchange registers
G05

Program
Statement

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-46

TI 231-01EN Jan..06, 2017-00

3.30	 S Register Rotation
[Mnemonic Instruction Code]
ROT	 S Register Rotation

[Operation]
This command rotates data in all registers. Namely, the data in S2, S3, and S4 registers are
pushed into the S1, S2, and S3 registers respectively and the data in the S1 register moves to
the S4 register. The behavior of the registers when the ROT command is executed is shown
below in figure 3.30.1.

S1
S2
S3
S4

A
B
C
D

 Arithmetic register

ROT
B
C
D
A

Figure 3.30.1 Behavior of the S Registers When ROT Command Is Executed

[Function Block]
The function block can be expressed as shown in figure 3.30.2.

ROT

Figure 3.30.2 Function Block of S Register Rotation

[Program Example]
Loading and rotating the data in S registers can be programmed as follows.

Step S1 S2 S3 S4 Description

G01 LDX1 X1 Load input 1
G02 LDX2 X2 X1 Load input 2
G03 LDX3 X3 X2 X1 Load input 3
G04 LDC01 C01 X3 X2 X1 Load fixed constant
G05 ROT X3 X2 X1 C01 Rotate registers
G06

Program
Statement

Next
computation

Note: For the WXT, read the program steps and fixed constants in this section as shown below:
	 Program steps: “G01 to G59” as “B20 to B59”
	 Fixed constants: “C01 to C59 (or H01 to H59)” as “C20 to C63”

		 3. Computational Operations and Applications 3-47

TI 231-01EN Jan..06, 2017-00

3.31	 No Operation
[Mnemonic Instruction Code]
NOP

[Operation]
This command has no effect on the program operation.

3.32	 Contact Input and Output (for MXD-A and
VJX7 with Optional Contact Output Only)

[Mnemonic Instruction Code]

Symbol MXD VJX7 with Optional Contact Output
LDDI1 Loads contact input
LDDO1 Loads contact output status Loads contact output status
LDDO2 Loads contact output status
STDO1 Outputs contact Outputs contact
STDO2 Outputs contact

Note:	 Those commands are available only with MXD computing unit which has the standard contact I/O function and VJX7 which has
an optional contact output function. For other models, DO1 and DO2 registers can be used as user flags.

[Operation]
With these commands, you can input and output contacts in the same way as analog input and
output.
The data ‘0’ means contact ON and ‘1’ means OFF.

LD: This command reads contact input and output statuses to the S1 register. The
register’s internal data is 0.000 for 0, and 1.000 for 1.

ST: This command outputs the data of the S1 register as a status. The status data is 0
(contact ON) if the register data is less than 0.5, and 1 (contact OFF) if it is not.

• MXD-A Computing Unit
[Function Block]
The function block can be expressed as shown in figure 3.32.1, which turns ON or OFF the
contact output depending on the contact input status. The dotted line indicates the flow of the
contact signal.

DI1

DO1

Figure 3.32.1 Function Block of Contact Input and Output 1

[Program Example]
Figure 3.32.1 can be programmed as shown in the table below.

Step Program Statement S1 S2 Description
G01 LDDI1 0 or 1 Load contact input 1
G02 STDO1 0 or 1 Output contact output 1
G03 Next computation

1

2

5

3

6

4

7

		 3. Computational Operations and Applications 3-48

TI 231-01EN Jan..06, 2017-00

• VJX7 Computing Unit with Optional Contact Output
[Function Block]
The function block can be expressed as shown in figure 3.32.2, which exchanges the data
between contact output 1 and 2.

DO1 <=> DO2

Figure 3.32.2 Function Block of Contact Output 1 and Output 2

[Program Example]
Figure 3.32.2 can be programmed as shown in the table below.

Step S1 S2 Description

G01 LDDO1 0 or 1 Load contact output status 1
G02 LDDO2 0 or 1 0 or 1 Load contact output status 2
G03 STDO1 0 or 1 0 or 1 Output data in S1 register
 (old DO2 status) to contact output 1
G04 CHG 0 or 1 0 or 1 Exchange S1 and S2 registers
G05 STDO2 0 or 1 0 or 1 Output data in S1 register
 (old DO1 status) to contact output 2
G06

Program
Statement

Next
computation

3.33	 User Flag
[Mnemonic Instruction Code]
LDDOn		 Loading Status Signal
(n = 2 to 4 for the MXD; n = 1 to 4 for the MXS, MXT, VJX7*)
STDOnStoring Status Signal
(n = 2 to 4 for the MXD; n = 1 to 4 for the MXS, MXT, VJX7*)
*: For the VJX7 with an optional contact output, n = 3 or 4.

[Operation]
These commands can be used as temporary storage for the status signal (0 or 1).

3.34 	 End of Computation
[Mnemonic Instruction Code]
END

[Operation]
This command finishes the computation. If the program encounters the END command, it skips
the rest of the computation and quits itself.

		 4. Programming 4-1

TI 231-01EN Jan..06, 2017-00

4.	 Programming
You can create programs by combining the examples mentioned in previous chapters. Refer to
the following items when creating a program.
	 Programs should be as simple as possible

	 Auxiliary functions can be added at the later stage if required, but at the primary stage,
programs should be simple, legible and consideration of the main objective function should
be made.

	 Programs should be understandable by anyone

	 It is not necessary to create super-efficient programs that miss out steps. Such programs
are difficult to understand. Bear in mind that programs should be understood by anyone.

	 Make full use of exercises and precedents

	 Making good use of examples and precedents can save labor and is a short cut to making
accurate programs.Make use of the exercises given in this document.

1

2

5

3

6

4

7

		 4. Programming 4-2

TI 231-01EN Jan..06, 2017-00

4.1	 Programming Procedures

 · Check Inputs and Outputs

 · Scaling of signals dealt with by commands
 · Number of fixed constants
 · Number of dynamic commands
 · Rough-check program steps

 · Check program steps
 · Check overflow of computation

 · Input program using the Handy Terminal
or Parameter Setting Tool (VJ77)

Programming
Procedures

Checking Input/Output

Entering Program

Preparing Data Sheet

Creating Program

Preparing Work Sheet

Summarizing Sequences and
Signal Computation

Test Run

End

 · Test and debug the program (sequences
and computational accuracy)

Figure 4.1.1 Programming Procedure Flow

		 4. Programming 4-3

TI 231-01EN Jan..06, 2017-00

4.2	 Programming Exercise (Temperature-
pressure compensation for ideal gas flow
control)

This example of computation process shows temperature-pressure compensation of gas flow
(Programmable on the MXT-A and WXT-A units).
The example describes scaling of the arithmetic computation and the method of determining a
fixed constant.
(1)	 Determining computation method
	 As shown in figure 4.2.1, to compensate for flow signals from a differential pressure

transmitter, pressure and temperature are adjusted.
	 Input signals from each detector are entered into the computing unit via a distributor or

converter.
	 The unit performs computation of the three inputs; differential pressure, pressure, and

temperature, and then outputs the compensated values.

Measured value
after compensation

E/P

Y1

X2 X1 X3

MXT Free-Program
Computing Unit

Manipulated output

Pressure
transmitter

Temperature
converter

Temperature-pressure
compensation calculation

 Distributor

Controller

Differential
pressure
transmitter Temperature

detector

Figure 4.2.1 Temperature-Pressure Compensation for Gas Flow Control

(2)	 Assembling of the arithmetic computation
	 Temperature-pressure compensation for ideal gas flow is normally expressed as follows:

	
QX= · ∆P

Pf · Tn

Pn · Tf

ΔP : Differential pressure

Qx : Gas flow converted to reference conditions

Pf : Working gas pressure expressed as an absolute pressure

Pn : Orifice design reference pressure expressed as an absolute pressure

Tf : Working gas temperature expressed as an absolute temperature

Tn : Orifice design reference temperature expressed as an absolute temperature

1

2

5

3

6

4

7

		 4. Programming 4-4

TI 231-01EN Jan..06, 2017-00

(3)	 Normalization of Computation
	 Physical quantity of compensation expression is converted to normalized signal (0.000-

1.000) of computing unit.
Pf = Pspan · X2 + Pmin

Tf = Tspan · X3 + Tmin

Qx = Qspan · Y

ΔP = ΔPspan · X1

where X1 : Differential pressure signal (0.000-1.000)

		 X2 : Pressure signal (0.000-1.000)

		 X3 : Temperature signal (0.000-1.000)

		 Y : Compensated flow signal (0.000-1.000)

By substituting normalized signal values, the following expression is obtained:

	

Qspan · Y= · ∆Pspan · X1

Pspan

Pn

Pmin

Pn
 · X2 +

Tspan

Tn

Tmin

Tn
 · X3 +

Orifice Qx and ΔP are normally designed so as to be Y= X in design reference condition.
Therefore, scaling by ∆Pspan/Qspan is not needed and as shown below, temperature pressure
compensation expression is

	
Y= · X1

K2 · X2 + A2

K3 · X3 + A3

where	 K2 = Pspan/Pn

	 A2 = Pmin/Pn

	 K3 = Tspan/Tn

	 A3 = Tmin/Tn.
Since the MXT computing unit has three inputs, temperature and pressure compensations can
be made in one unit.

Setting conditions for computation of temperature-pressure compensation
1.	 Orifice design reference pressure: Pn = 600 kPa
2.	 Orifice design reference temperature: Tn = 300°C
3.	 Pressure transmitter range: 0-1000 kPa
4.	 Temperature converter range: 0-500°C

		 4. Programming 4-5

TI 231-01EN Jan..06, 2017-00

By substituting the above data, the following expressions can be used to obtain K2, A2, K3, and
A3:

K2 = Pressure transmitter span/Orifice design reference pressure (absolute pressure) = 1000/
(600 + 101.3) = 1.426

A2 = Pressure transmitter minimum scale (absolute pressure)/Orifice design reference
pressure (absolute pressure) = (0 + 101.3)/(600 + 101.3) = 0.1445

K3 = Temperature converter span/Orifice design reference temperature (absolute temperature)
= 500/(300 + 273.15) = 0.8724

A3 = Temperature transmitter minimum scale (absolute temperature)/Orifice design reference
temperature (absolute temperature) = (0 + 273.15)/(300 + 273.15) = 0.4766

By substituting the above:

	
Y= · X11.426 · X2 + 0.1445

0.8724 · X3 + 0.4766

(4)	 Fixed constants setting
	 Allocation of the fixed constants is as shown below:

	 Pressure compensation computation

		 K2 = 1.426	 C02 = 142.6%

		 A2 = 0.1445	 C04 = 14.45%

	 Temperature compensation computation

		 K3 = 0.8724	 C07 = 87.24%

		 A3 = 0.4766	 C08 = 47.66%

(5)	 Assembling of the function block
This example can be assembled in the function block by one computation expression:

	

X1 X2

Differential
pressure Pressure

X3
Temperature

Y1

Y= · X1K2 · X2 + A2
K3 · X3 + A3

	 Figure 4.3.1 Flow Sheet of Function Block

1

2

5

3

6

4

7

		 4. Programming 4-6

TI 231-01EN Jan..06, 2017-00

(6)	 Data entry
	 After completion of the allotment of input/output and constants, the data is entered in the

data sheet.
	 Table 4.1 shows an example of data entry of temperature-pressure compensation

computation.

Table 4.1 Example of Data Sheet Entry (Temperature-Pressure Compensation Computation)

 Fixed constant Value Description
 C02 142.6% K2 = 1.426
 C03
 C04 87.24% K3 = 0.8724
 C05
 C06
 C07 14.45% A2 = 0.1445
 C08 47.66% A3 = 0.4766
 C09 0.6%

K2 = C02
K3 = C04
A2 = C07
A3 = C08

 Data Description 0% 100%
Analog input X1 Differential pressure (mmH2O) 0 3200
 X2 Pressure (kPa) 0 1000
 X3 Temperature (˚C) 0 500.0
Analog output Y 0 100.0Temperature-pressure

compensation output (%)

		 4. Programming 4-7

TI 231-01EN Jan..06, 2017-00

(7)	 Program sheet
	 Table 4.2 shows an example of a program for temperature-pressure compensation

computation. Enter the data in the program field of the table. Explanations are entered
into “Description” column of the program sheet so that execution can be easily and quickly
understood at a later date. The arithmetic register columns of the program sheet indicate the
contents of registers, other than S4 register, following the execution of each program step.
Data does not have to be entered in the arithmetic register columns.

Table 4.2 Program Example (Temperature-Pressure Compensation Computation)

Step S1 S2 S3

G01 LDX2 X2
G02 LDC02 C02 X2

G03 MLT C02 x X2
G04 LDC07 C07 C02 x X2

G05 ADD a

G06 LDX3 X3 a
G07 LDC04 C04 X3 a

G08 MLT C04 x X3 a
G09 LDC08 C08 C04 x X3 a

G10 ADD b a

G11 DIV a/b

G12 LDX1 X1 a/b

G13 MLT a/b x X1
G14 LDC09 C09 a/b x X1

G15 SQT a/b · X1

G16 STY1 a/b · X1
G17 END

Program
Statement

Description

Load pressure signal
Load fixed constant C02 =
142.6% (K2 = 1.426)
K2 x X2
Load fixed constant C07 =
14.45% (A2 = 0.1445)
Pressure compensating term
(a = C02 x X2 + C07)
Load temperature signal
Load fixed constant C04 =
87.24% (K3 = 0.8724)
K3 x X3
Load fixed constant C08 =
47.66% (A3 = 0.4766)
Temperature compensating
term (b = C04 x X3 + C08)
Pressure and temperature
compensating term
computation
Load differential pressure
signal

Load low-cut point C09 =
0.6%
Temperature-pressure signal
compensation computation
Output compensated signal

1

2

5

3

6

4

7

Blank Page

		 5. Program Entry and Setting Fixed Constants 5-1

TI 231-01EN Jan..06, 2017-00

5.	 Program Entry and Setting Fixed
Constants

There are two ways to enter program code or set fixed constants.
One way is to use the Handy Terminal (JHT200) that deals with data one item at a time. The
other is to use the Parameter Setting Tool (VJ77) that can collectively process data sent from a
PC. Both of them can set and read program code and data, and monitor the data.
Refer to the respective document for details.

1

2

5

3

6

4

7

Blank Page

		 Appendix App-1

TI 231-01EN Jan..06, 2017-00

Appendix 1.	 List of Program Functions
Category Command

Load

Store

 Arithmetic Register

Before Command Execution After Command Execution Description

S1 S2 S3 S1 S2 S3

LDXn

HSL

LSL

HLM

LLM

FX1,2

FX3,4

CMP

SW

 Load Xn

LDYn

LDCnn
LDTn
LDDIn
LDDOn
STXn
STYn
STTn

STDOn
ADD
SUB
MLT
DIV
SQR
ABS

SIN
COS
TAN
ASIN
ACOS
ATAN

LN
LOG
EXP
PWR

Sine
Cosine
Tangent
Arcsine
Arccosine
Arctangent
Natural logarithm
Common logarithm
Exponential Function
Power Function

Load Cnn
Load Tn
Load DIn
Load DOn
Store in Xn
Store in Yn
Store in Tn
Store in DOn
Addition
 Subtraction
Multiplication
Division
Square root extraction
Absolute value

Load Yn

A A

C

C

A

A

A

A

B

C

B

D

D

B

B

B

B

C

C

B C Xn

A A BB C Yn

A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
B
B
B
B
C
C
C
C
B
B

B
B
B
B
B
B
B
B
B
C

B
B
B
B
C
C
C
C
D
D
D
D
C
C

nn = 01 to 59, Cnn: Fixed constant *1
n = 1 to 4, Tn: Buffer register
n = 1, DIn: Digital input *2
n = 1 to 4, DOn: Digital output *3
Stores S1 in Xn.
Stores S1 in Yn.
Stores S1 in Tn.
Stores S1 in DOn.
S1←S2+S1
S1←S2-S1
S1←S2xS1
S1←S2/S1
S1← S1
S1←|S1|

C
C
C
C
C
C
C
C
C
D

S1←SIN(S1) *7
S1←COS(S1) *7
S1←TAN(S1) *7
S1←ASIN(S1) *7
S1←ACOS(S1) *7
S1←ATAN(S1) *7
S1←LN(S1)
S1←LOG(S1)
S1←EXP(S1)
S1←S2S1

B
B
B
B
B
B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C
C
C
C
C

High selector

Low selector

High limiter

Low limiter

Ten-segment
linearizer
Arbitrary line
segment linearizer

Comparison

Signal switching

A

A

A

0/1

A
A
A
A
A
A
A
A
A
A

B
B
B
B
B
B
B
B
B
B

C
C
C
C
C
C
C
C
C
C

SINA
COSA
TANA

ASINA
ACOSA
ATANA
LN (A)
LOG(A)
EXP(A)

B A

Upper limit

The higher
of A and B

Compares S1 and S2 registers and stores
the higher in S1
Compares S1 and S2 registers and stores
the lower in S1
If input is less than the upper limit it is stored in
S1, if not the upper limit value is stored in S1.
If input is more than lower limit it is stored in S1,
if not the lower limit value is stored in S1.
Ten-segment linearizer with equally divided ten break points FX1: C01 to C11
Arbitrary ten-segment linearizer FX2: C12 to C33 *4
Arbitrary twenty-segment linearizer
X-axis: C01 to C21, Y-axis: C22 to C42 *5*6
If S1 > S2, 0.000 → S1;
 If not, 1.000→S1
If S1 < 0.500, S3 → S1;
 If not, S2→ S1

The lower
of A and B

 Limited input

 Limited input

Function output

Function output

 0/1

AorB

Lower limit

 Input

 Input

 Input

 Input

B

B

A

A

B

A

C

C

A

A

B

B

C

B

Cnn
Tn
DIn
DOn

A
A
A
A

B+A
B-A
BxA
B/A
A
|A|

For MXS, VJXS, VJX7, and MXD: n = 1;
For MXT and WXT:n=1 to 3(Xn:Input)

Command
symbol

For MXD, MXT, VJXS, VJX7 without optional
analog output, and WXT: n = 1;
For MXS, VJXS, and VJX7 with optional analog
output: n = 1 to 2 (Yn: Output)

Basic
Operation

Function
Operation

A, B, C and D represent data prestored in arithmetic registers.
Although the computing unit has the four built-in registers S1 to S4, this table only shows S1 to S3.
 *1: nn = 20 to 63 for the WXT.
 *2: This function can be used for the MXD only.
 *3: For the MXD, DO1 is used as a digital output and DO2 to DO4 are used as buffers.
 For a VJX7 with optional contact output, DO1, DO2, DO3 and DO4 are used as buffers.
 *4: For the WXT, FX1: C20 to C30 and FX2: C31 to C52.
 *5: For the WXT, FX3: C20 to C61.
 *6: For the FX4 linearizer, set as many data items as the number of line segments specified using C43. For the WXT, this function cannot be used.
 *7: This function can be used for the VJX7 and WXT only.

1

2

5

3

6

4

7

		 Appendix App-2

TI 231-01EN Jan..06, 2017-00

LAGn

LEDn

DED

VEL

VLMn

MAV

TIM

PIC

SQT

SQAn

SQBn

CPO

GIFnn

CCD

First-order lag

Differential
calculus

Dead time

 Velocity

Moving average
computation

Timer

AND
OR

NOT
EOR
GOnn

CHG
ROT

Logical AND
Logical OR
Logical NOT
Logical EOR
Unconditional jump

S register exchange
S register rotation

Time constant

Time constant

Dead time

Computation
time

Computation
time

0/1

0/1

Descending
limit

 Ascending
limit

Reset counter

Low-cut
point

Low-cut
point

Low-cut
point

A

A

A

A

A

A

A

B

B

B

B

A

B

B

B

B

C

C

C

B

A

A

B

B

B

A

Input

Input

Input

Input

Input

A

A

Input

A

A

A

B

A

B

B

B

A

A

A

A

A

Input

A

B

First-order lag
computation output

Limited velocity
input

Counter output

Input

Low-cut
A

Differential calculus
output

Dead time
computation output

Velocity
computation output

Moving average

Elapsed time

0/1

Velocity limiter

Pulse input
counter

Square root extraction
with variable low-cut point
Square root extraction
with variable low-cut point
Square root extraction
with variable low-cut point
Integrated
pulse output

No operation

Conditional
jump

End of computation

Status change detection

Integrating
ratio

A
A
A
A
A

A
A

A

A

A

B
B
B
B
B

C
C
C
C
C

A B
A B

A
A B

A

C
C

C

C

C

C
C
B
C
B

D
D
C
D
C

D

C
D

C

C

A
C

B

B

C

B
B

A

A

B

B
B

B

B

B

Input

Performs first-order lag computation of input,
and stores the value in S1 (n = 1 to 3).
Performs differential calculus computation of
input, and stores the value in S1 (n = 1 to 3).
Stores in S1, the input value sampled at a point
of time a specified period before the current time *1
Subtracts the input value sampled at a point of time a specified period before
the current time from the sampled current input value and stores it in S1 *1
Limits input velocity within preset limits and
stores the value in S1 (n = 1 to 2).
Calculates average from a time preset in the
past to now and stores the result in S1 *1
If S1 < 0.500, resets timer;
If not, starts or continues timer.

When S1 changes 0 to 1, S1 = 1 *2

S1←S2 S1
S1←S2 S1
S1←S1
S1←S2 S1
Jumps to step Bnn (nn = 01 to 59) *3

Exchanges S1 and S2 registers.
S2→S1, S3→S2, S4→S3, S1→S4

No operation

Converts input S2 to pulses using S1 as integrating
ratio and outputs the result as digital signals *2

If S1 = 0 jumps to the next step,
if S1 = 1 jumps to step Bnn (nn = 01 to 59) *3

 When S1 changes 0 to 1, S1 = 1 *2

S1 ← Low-cut S2

S1 ← Low-cut S2(n = 1 to 3)

S1 ← Low-cut S2(n = 1 to 3)

Low-cut
A

Low-cut
A

NOP

END

Category Command

 Arithmetic Register

Before Command Execution After Command Execution Description

S1 S2 S3 S1 S2 S3

Command
symbol

Dynamic
Operation

Logical
Operation

Other

Stores in S1, the result of comparing the
input value of the S3 register with the alarm
point of the S2 register and the hysteresis of
the S1 register (n = 1 and 2). If the alarm is
on, S1 = 1. *4

HALn
LALn

High alarm
Low alarm

Hysteresis Alarm
point

Input
value

0/1 A A

A, B, C and D represent data prestored in arithmetic registers.
Although the computing unit has the four built-in registers S1 to S4, this table only shows S1 to S3.
 *1: Any two commands among dead time, velocity, and moving average cannot be used together in a program step.
 *2: For MXD only.
 *3: For the WXT, nn = 20 to 59.
 *4: For the WXT, this function cannot be used.

		 Appendix App-3

TI 231-01EN Jan..06, 2017-00

Appendix 2.	 Work Sheet
1

2

5

3

6

4

7

		 Appendix App-4

TI 231-01EN Jan..06, 2017-00

Appendix 3.	 Data Sheet (for WXT)

DATA SHEET
Program No. :

Model :

Tag No. : Serial No. :

Plant

Data Description 0% 100% Buffer Register Digital Input (DI1), Output (DOn)

Analog Input

 Analog Output

X1

X2

X3

Y1

Y2

T1

T2

T3

T4

DO1

DO2

DO3

DO4

Note: Use DO2 to DO4
as user flags.

Fixed Constant Value Description Fixed Constant Value Description
C20
C21
C22
C23
C24
C25
C26
C27
C28
C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
C41

C42
C43
C44
C45
C46
C47
C48
C49
C50
C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63

Remarks:

 No. Revised Dr. Ch. Customer App. Ch. Dr.

DI1

		 Appendix App-5

TI 231-01EN Jan..06, 2017-00

Appendix 4.	 Data Sheet (for VJX7, VJXS,
MXS, MXD and MXT)

DATA SHEET
Program No. :

Model : VJX7
Tag No. : Serial No. :

Plant

Data Description 0% 100% Buffer Register Digital Output (DOn)

Analog Input

Analog Output

X1
X2
X3
Y1
Y2

T1
T2
T3
T4

DO1
DO2
DO3
DO4

Note: The analog input (Xn) and output (Yn) registers that do
not corresspond to actual hardware I/O ports can be
used as buffers or user flags.

Fixed Constant Value Description Fixed Constant Value Description

Remarks:

 No. Revised Dr. Ch. Customer App. Ch. Dr.

H01
H02
H03
H04
H05
H06
H07
H08
H09
H10
H11
H12
H13
H14
H15
H16
H17
H18
H19
H20
H21
H22
H23
H24
H25
H26
H27
H28
H29
H30

H31
H32
H33
H34
H35
H36
H37
H38
H39
H40
H41
H42
H43
H44
H45
H46
H47
H48
H49
H50
H51
H52
H53
H54
H55
H56
H57
H58
H59

1

2

5

3

6

4

7

		 Appendix App-6

TI 231-01EN Jan..06, 2017-00

Appendix 5. Program Sheet
PROGRAM SHEET

Program No. :

Model :
Tag No. : Serial No. :

Plant

 Remarks:

 No. Revised Dr. Ch. Customer App. Ch. Dr.

Step Command S1 S2 S3 Description

i

Revision Information
Title	 :	 Functions of VJ, M, and WXT Free-Program Computing Units
Manual number	:	 TI 231-01EN

Feb. 2000/1st Edition
Newly published

May. 2004/2nd Edition

Jul. 2005/3rd Edition

Dec. 2005/4ht Edition

Jul. 2015/5th Edition
Error correction

Jan. 2017/6th Edition
Add the line segment function and alarm function to VJX7.

Written by	 Yokogawa Electric Corporation
Published by	 Yokogawa Electric Corporation
	 2-9-32 Nakacho, Musashino-shi, Tokyo 180-8750, JAPAN

YOKOGAWA ELECTRIC CORPORATION
Headquarters
2-9-32, Nakacho, Musashino-shi, Tokyo, 180-8750 JAPAN
Phone : 81-422-52-5555

Branch Sales Offices
Osaka, Nagoya, Hiroshima, Kurashiki, Fukuoka, Kitakyusyu

YOKOGAWA CORPORATION OF AMERICA
Head Office
12530 West Airport Blvd, Sugar Land, Texas 77478, USA
Phone : 1-281-340-3800 Fax : 1-281-340-3838

Georgia Office
2 Dart Road, Newnan, Georgia 30265, USA
Phone : 1-800-888-6400/ 1-770-253-7000 Fax : 1-770-254-0928

YOKOGAWA AMERICA DO SUL LTDA.
Praca Acapulco, 31 - Santo Amaro, Sáo Paulo/SP, BRAZIL, CEP-04675-190
Phone : 55-11-5681-2400 Fax : 55-11-5681-4434

YOKOGAWA EUROPE B. V.
Euroweg 2, 3825 HD Amersfoort, THE NETHERLANDS
Phone : 31-88-4641000 Fax : 31-88-4641111

YOKOGAWA ELECTRIC CIS LTD.
Grokholskiy per 13 Building 2, 4th Floor 129090, Moscow, RUSSIA
Phone : 7-495-737-7868 Fax : 7-495-737-7869

YOKOGAWA CHINA CO., LTD.
3F Tower D Cartelo Crocodile Building, No.568 West Tianshan Road,
Shanghai 200335, CHINA
Phone : 86-21-62396262 Fax : 86-21-62387866

YOKOGAWA ELECTRIC KOREA CO., LTD.
(Yokogawa B/D, Yangpyeong-dong 4-Ga), 21, Seonyu-ro 45-gil, Yeongdeungpo-gu,
Seoul, 150-866, KOREA
Phone : 82-2-2628-6000 Fax : 82-2-2628-6400

YOKOGAWA ENGINEERING ASIA PTE. LTD.
5 Bedok South Road, Singapore 469270, SINGAPORE
Phone : 65-6241-9933 Fax : 65-6241-2606

YOKOGAWA INDIA LTD.
Plot No.96, Electronic City Complex, Hosur Road, Bangalore - 560 100, INDIA
Phone : 91-80-4158-6000 Fax : 91-80-2852-1442

YOKOGAWA AUSTRALIA PTY. LTD.
Tower A, 112-118 Talavera Road, Macquarie Park NSW 2113, AUSTRALIA
Phone : 61-2-8870-1100 Fax : 61-2-8870-1111

YOKOGAWA MIDDLE EAST & AFRICA B.S.C.(C)
P.O. Box 10070, Manama, Building 577, Road 2516, Busaiteen 225, Muharraq,
Kingdom of BAHRAIN
Phone : 973-17358100 Fax : 973-17336100
 Apr. '15

Printed in Japan

	Introduction
	1.	Block Diagram and Terminal Arrangement
	1.1	MXD Free-Program Computing Unit
	1.2	MXS Free-Program Computing Unit
	1.3	MXT Free-Program Computing Unit
	1.4	VJXS Free-Program Computing Unit
	1.5 	VJX7 Free-Program Computing Unit
	1.6	WXT Free-Program Computing Unit

	2.	Operation of Computation Program
	2.1	Basic Flow
	2.2	Principle of Computation
	2.3	Program Structure, Capacity, and Interval

	3.	Computational Operations and Applications
	3.1	Program Commands and Corresponding Registers
	3.2	Arithmetical Operation
	3.3	Square Root Extraction without Variable Low-cut Point
	3.4	Square Root Extraction with Variable Low-cut Point (1)
	3.5	Square Root Extraction with Variable Low-cut Point (2)
	3.6	Square Root Extraction with Variable Low-cut Point (3)
	3.7	Absolute Value
	3.8	Selector
	3.9	Limiter
	3.10	Line Segment Function
	3.11	Comparison
	3.12	Signal Switching
	3.13	First-order Lag Computation
	3.14	First-order Lead (Differential Calculus)
	3.15	Dead Time Computation
	3.16	Velocity Computation
	3.17	Velocity Limiter
	3.18	Moving Average Computation
	3.19	Timer
	3.20	Status Change Detection (for MXD-A Only)
	3.21	Pulse Input Counter (for MXD-A Only)
	3.22	Integrated Pulse Output Counter (for MXD Only)
	3.23	Alarm
	3.24	Logical Operation
	3.25	Trigonometric Function (for VJX7 and WXT Only)
	3.26	Other Functions
	3.27	Unconditional Jump
	3.28	Conditional Jump
	3.29 	S Register Exchange
	3.30	S Register Rotation
	3.31	No Operation
	3.32	Contact Input and Output (for MXD-A and VJX7 with Optional Contact Output Only)
	3.33	User Flag
	3.34 	End of Computation

	4.	Programming
	4.1	Programming Procedures
	4.2	Programming Exercise (Temperature-pressure compensation for ideal gas flow control)

	5.	Program Entry and Setting Fixed Constants
	Appendix 1.	List of Program Functions
	Appendix 2.	Work Sheet
	Appendix 3.	Data Sheet (for WXT)
	Appendix 4.	Data Sheet (for VJX7, VJXS, MXS, MXD and MXT)
	Appendix 5. Program Sheet
	Revision Information

